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Abstract. Improving safety and operational efficiency in the rail trans-
port industry relies on a precise understanding of the root causes behind
system failures. In this research, we propose RailLog RCA, a comprehen-
sive root cause analysis approach leveraging log data from railway oper-
ating systems. This approach is designed to detect the Point of Incipient
Failure through the analysis of real-world time-series data. By construct-
ing a structural causal model and applying probabilistic counterfactual
analysis, RaiLog RCA provides actionable insights that enhance the root
cause discovery from identification of the time of appearance of anomalies
and the associated causal graph. The paper presents the experimental
results that demonstrate the accuracy performance of the proposed ap-
proach.
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1 Introduction

Root Cause Analysis (RCA) is a troubleshooting method of problem solving used
for identifying the root causes of faults or failures [22]. RCA is a form of deductive
inference since it requires an understanding of the underlying causal mechanisms
for the potential root causes and the problem, i.e., what is typically found in the
context of Predictive Maintenance through the Failure Mode, Mechanism, and
Effect Analysis documentation. RCA can be decomposed into four steps:

1. Identify and describe the problem clearly.

2. Establish a timeline from the normal situation until the failure finally occurs,
through the Point of Incipient Failure [24].

3. Distinguish between the root cause and other causal factors.

4. Establish a causal graph between the root cause and the observed problem.

The trigger signal of the RCA is given by the failure timestamp (i.e., the
point in time when the failure variable is observed). Then, RCA yields a list of
potential root cause variables along with their probabilities, which aligns with the
way complex systems fail [6]. The variables that comprise the data are required
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to be representative enough to help the developers and engineers pinpoint the
source of the observed problems through the root causes and their effects [21].

This work presents Railog RCA, a multi-level diagnosis method that signals
railway systems anomalies and pinpoints their root causes through statistical
inference. Initially, the proposed approach tackles the detection of anomalies by
conducting a coarse-grained diagnosis to determine if the asset under test shows
a normal or an abnormal working condition. Then, it explains the potential
reasons why the strange behavior occurred. Finally, it exploits a probabilistic
model and conducts a fine-grained diagnosis by determining the root cause of
the observed anomaly.

2 RaiLog RCA: Causal Inference

2.1 Causal Graph Generation

The causal links among the variables X that build the model of a system are
assumed to be most effectively represented using the tools from the field of
Causality. In this sense, the Structural Causal Model (SCM) is the framework
that can most generally capture such directed associations [15]. The SCM defines
a set of assignments governing their specific functional associations f, along with
some independent noise U that accounts for everything that is not explicitly
included in the model:

Xj = fi(PA;, U;) (1)
where PA; represents the direct causes of the X; variable.

If enough knowledge and experience from the field is available from the sub-
ject matter experts, i.e., strictly complying with the RCA requirements, then a
complete SCM may be developed right from the start. However, this is not the
typical use-case scenario in complex industrial settings, and data generally needs
to be carefully leveraged to drive the development of the causal model.

Whenever the structure of the model is to be inferred from the observed
variables, assumptions need to be made about the data generating process, con-
straints need to be applied, and usually the statistical methods of the algorithms
yield different graphs that explain the same factual data [7].

In a multivariate environment, the most straightforward approach is led
by the so-called “constraint-based” discovery methods. These traditional ap-
proaches iteratively build the causal graph by utilizing a score such as the p-value
of conditional independence tests. As a general technique, the Peter-Clark (PC)
algorithm is described [19]. PC is a causal network structure learning algorithm
that copes well with high dimensionality and can often also identify the direction
of contemporaneous links [17]. It is consistent under i.i.d. sampling assuming no
latent confounders, i.e., common causes, so that all relevant variables need to be
observed in the data. Its outcome is a Markov Equivalence Class, and thus it is
likely to have different graphical representations that explain the same observed
data. The PC algorithm is especially suited to discover causality in combination
with the Fisher-Z independence test because it requires less constraints for the
input data [10].
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Dynamic Causal Bayesian Network Model The proposed approach ini-
tially infers the causal relations from observational time series event data. Nev-
ertheless, no family or method for causal discovery in time series stands out in
all situations with different characteristics [2].

An initial baseline is obtained with the PC algorithm (using the Fisher-Z
independence test) on data augmented with time lags. The event count-based
transformation naturally lends itself to the application of this technique as long
as the counts approximate a Gaussian distribution, which can be asserted using
the Lilliefors normality test [11].

However, the direct application of PC discovery may not be advised for cer-
tain time series cases, and other more involved methods using more powerful
statistical tests (including explicit time lags) should be explored on top of it.
In consequence, the Momentary Conditional Independence (PC-MCI) test is
considered [18], which has a stronger causal detection ability based on partial
correlation tests.

Once the structural graph that binds the variables is determined, the func-
tional associations of the SCM may be learned, and this work adopts a stochastic
interpretation of the world. Therefore, it treats all X (¢) as random variables, and
the resulting SCM statistically describes their (conditional) probability distribu-
tions. In this sense, Dynamic Causal Bayesian Networks (DCBN) are generative
model that yield a factorized representation of a stochastic process. They rep-
resent a probability distribution over the possible histories of a time-invariant
process; their advantage with respect to classical probabilistic temporal models
like a Markov chain is that a DCBN is a stochastic transition model factored
over a number of random variables, over which a set of conditional dependency
assumptions is defined [4].

Considering n time-dependent discrete random variables X}, X%, ..., X! and
a directed acyclic graph that relates them causally, a DCBN is essentially their
replication over time slices t— A (creating the so-called discretization steps), with
the addition of a set of arcs in the graph representing the transition model, which
is defined through the distribution P(Xf|X;7A), for all time-related variables 4
and j. Arcs connecting nodes at different time-slices (A > 0) are called interslice
edges, while arcs connecting nodes at the same slice (A = 0) are called intraslice
edges. The joint probability distribution of the DCBN is shown as follows:

P(X) =[] P (xi2|pAT2) . (2)
Vi

The graphical nature of such Bayesian networks allows seeing relationships
among different variables, and their conditional dependencies enable performing
probabilistic inference [1]. Specifically, DCBN are powerful tools for knowledge
representation and inference under uncertainty [16].

Incipient Failure Prediction The learned DCBN shall be used to estimate
the probability of the Failure variable X in time Pg(¢), which is the sink node
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in the model that represents the eventual system crash, given the observed data
(i.e., the root causes and their effects):

Pp(t) = P(Xp|PAf) . 3)

Ideally, the probability of observing a high count of failure events should be a
monotonically increasing function (in time) until the moment of system failure.

To detect if an anomaly is present, the Point of Incipient Failure T' should
be determined. This is the moment in time when the system starts developing
an abnormal behavior that will eventually lead to the crash. Also, this is where
the root cause of the observed anomaly is reasonably expected to be found.
A possible strategy to determine this instant can be defined by the minimum-
time significant-second-derivative of the probability of Failure, as this is the first
inflection point with a minimally relevant increase © of risk (it may not be the
greatest absolute increase, but it shall be one with the precedence in time):

(02
T = min (WPF(t) > @) . (4)

While there may be many different ways to express this criterion, by using a
© threshold parameter the subject matter experts can be easily involved in the
design of the solution.

2.2 Path Likelihood Estimation

The hypothesis of isolation is a methodological requirement of the sciences for
research; hence, the useful fiction of the isolated “causal chain” or “singled-out
path” in the structure will work to the extent to which such an isolation takes
place, and this is often the case in definite respects during limited intervals
of time. Moreover, since every isolable process is causal, anomalies can emerge
solely as a result of external perturbations [5].

Concerning the analysis of a DCBN for RCA, estimating the most likely
time-sequence chain of variables for the observed anomaly event adds explana-
tory value in an industrial environment. In the DCBN, each node represents an
event count or state change of a variable, and the arcs represent causal-temporal
relationships between the nodes. In this setting, probabilistic temporal logic de-
termines that causes and effects are steady state formulas, the properties of
which hold for the system at a certain point in time [20], and this allows for
each formula to be a path formula too where multiple variables are involved.
Therefore, the causal paths shall be given by the structure of the graph: a search
algorithm shall be used to traverse it and find all the routes S from the different
root nodes to the sink Failure node.

For the Point of Incipient Failure T, the most likely causal path S* that
explains the anomaly data can be determined after the exhaustive search among
all the potential paths S and their respective probabilities:

S :I?Each(s\s); t=T, (5)
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where s represents a structural path from a source node to the sink node (i.e.,
the failure event variable).

Conditioning on the variables not in the path under analysis (§) is important
to block spurious associations. This is especially relevant in the case of descen-
dants, because in the event of an anomaly, the parent/ancestor variables are
preferred as precedents [12].

Finally, in addition to putting the focus on the most expected behavior,
one could argue that the root cause may also have occurred in the most un-
expected/irregular setting [23], assuming that the most commonly experienced
issues will have already been solved. This alternative perspective may also be
covered in the proposed approach by minimizing the path likelihood probability.

2.3 Causal Inference

Beyond probabilistic inference, Causal Inference provides the tools that allow
estimating causal conclusions even in the absence of a true experiment, given
that certain assumptions are fulfilled. These assumptions increase in strength as
is defined in Pearl’s Causal Hierarchy (PCH) abstraction [3], i.e., Associational,
Interventional, and Counterfactual, which is summarized as follows.

At the bottom of the hierarchy there’s the Associational Layer, which de-
scribes the observational distribution of the factual data through their joint
probability function P(X). From this point forward, interesting quantities, i.e.,
the queries X, can be directly computed given some evidence Xg, through
their conditional probability:

P(Xq,XE)
P(Xg|XEg) = ——~—. 6

This level of analysis displays a degree sophistication akin to classical (un)supervised
Machine Learning techniques. As such, it is subject to confounding bias.

Interventional Analysis The Interventional Layer describes an actionable
distribution, which endows causal information at the population level, i.e., to
better understand the general behavior of the system. This level of analysis
can be achieved through actual experimentation via Randomized Control Trials,
or through statistical adjustments that smartly combine observed conditional
probabilities to reduce spurious associations in the estimation. Pearl’s do-calculus
is likely to be the most effective approach to determine the identifiability of causal
effects by applying the following three rules: 1) insertion/deletion of observations,
2) action/observation exchange, and 3) insertion/deletion of actions [13].

Counterfactual Analysis Finally, the Counterfactual Layer at the top of the
hierarchy describes a potential distribution (possibly at the individual failure
level) driven by hypothetical speculations over data that may contradict the
facts. Conducting this estimation requires the following three steps [14]:
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1. Abduction: Beliefs about the world are initially updated by taking into
account all the evidence E given in the context. Formally, the exogenous
noise probability distributions P(U) in the SCM are updated to P(U|E).

2. Action: Interventions are then conducted to reflect the counterfactual as-
sumptions, and a new causal model is thus created.

3. Prediction: Finally, counterfactual reasoning occurs over the new model
using the updated knowledge.

To systematically explore these counterfactual worlds, Algorithmic Recourse
applies a specific goal-driven rationale[9], where such environments are simulated
via inference through (atomic) interventions « in time on a specific abnormal
instance in order to revert the anomaly [8], i.e., to lower the risk of failure Xp.
This is expected to help in the recognition and understanding of the general root
causes that lead to the system failure [12].

Formally, the specific retrospective reasoning that these counterfactuals ex-
plore on the anomaly, i.e., the Point of Incipient Failure at t = T, can be stated
as:

P(XET = Lldo(X*=T = o), X1 XiZT = H) . (7)

Given that an anomaly was factually recorded in the data, i.e., through ob-
serving a high risk of failure Xt~ = H, i.e., a high count of failure/alarm events,
Equation ([?]) estimates the probability that the risk would have been low at
the Point of Incipient Failure Xt~ = L, had the root cause X ‘=T had the value
«, instead of the value it actually had when the anomaly was triggered. Note
that this formula does not involve regular probabilistic conditioning, but the
application of the Abduction-Action-Prediction method.

3 Experimental results and discussion

The proposed approach is primarily targeted at the railway domain, where it
aims to address various operational challenges and improve overall system effi-
ciency and reliability.

3.1 Data engineering pipeline : Automated Log processing

The proposed solution aims to process large machine logs in order to provide
insights into the anomalous behaviors of a railway asset. It leverages two types
of data: Event Variables (EV) High level, nominal qualitative data which group
functions into categories, such as subsystem events. State Variables (SV) Low
level, parametric quantitative or numeric data that show some kind of meaningful
order or hierarchy, such as physical sensor records. The two types of data can
be related, i.e., synchronized, by their timestamps.

The data engineering pipeline includes data preparation, characterization
and scoring. Data preparation represents a preprocessing step that transforms
raw data into usable information. The obtained structured data undergoes a
transformation to be standardized into a time-series format by generating time
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Fig. 1. RCA functional module diagram

windows. The training dataset is divided into time windows based on failure
pattern occurrences. Each window spans 5 hours prior to a failure event. Each
window is further divided into bins of 2 minutes each. The last bin of each
window always contains the failure pattern.

Variable 1 Variable n

—t— ——
.

Window
Unit 9
(p.n)

Bin p
(of a failure oceurrence) {

Fig. 2. Single window

Figure 1 shows a single window where rows represent bins and columns repre-
sent failure patterns of interest. The cell values correpond to the binary transfor-
mation by counting the variable messages occurrences within each bin therefore
obtaining an integer-valued representation for all the variables. Figure 2 displays
all windows combined as a tensor.

To effectively manage the expansive event-variable space, it is recommended
to filter relevant variables using Mutual Information measures and independence
testing, while also removing unrelated periodic events, resulting in a refined set of
significant integer-valued time series variables that reflect event count evolution.
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Fig. 3. Combined windows : Tensor

3.2 Causal discovery results

The features exploited for causal discovery are the 119 event variables resulting
from windowing along the timestamps present in the windowed data.

since, the PC algorithm ignores the time factor, it ignores caus_and_effect
relationships that unfold over time. In our work, and in order to compute the
causal time series analysis, the PC-MCI [18] algorithm was implemented using
the following hyper-parameters:

Table 1. Hyperparameters used in the PC-MCI algorithm

Parameter Value

dataframe df
cond_ind_test CMIsymb
significance ’fixed_thres’

n_symbs 3
verbosity 1
tau_min 0
tau_-max 5

pc-alpha 0.01
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4 conclusion

This research paper introduces a counterfactual Root Cause Analysis (RCA)
approach grounded in the principles of causal inference, adhering to railway in-
dustrial development standards. By utilizing multivariate time series data, the
study centers on the critical task of identifying the Point of Incipient Failure. The
findings suggest that this temporal milestone is pivotal for effective root cause
identification, as it is likely to harbor the origin of the fault. Expanding the
analysis to include various types of multivariate time series data could enhance
the robustness of the findings and allow for comparisons across different indus-
trial applications. Additionally, examining the integration of machine learning
techniques with the counterfactual methodology may improve the detection and
prediction of the Point of Incipient Failure, allowing for more proactive measures
to address potential system failures.
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