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Sentence-based Sentiment Analysis for Expressive

DRAFT

Abstract—Current research to improve state of the art Text-To-
Speech (TTS) synthesis studies both the processing of input text
and the ability to render natural expressive speech. Focusing on
the former as a front-end task in the production of synthetic
speech, this article investigates the proper adaptation of a
Sentiment Analysis procedure (positive/neutral /negative) that can
then be used as an input feature for expressive speech synthesis.
To this end, we evaluate different combinations of textual features
and dassif ers to determine the most appropriate adaptation pro-
cedure. The effectiveness of this scheme for Sentiment Analysisis
evaluated using the Semeval 2007 dataset and a Twitter corpus,
for ther affective nature and their granularity at the sentence
level, which is appropriate for an expressive TTS scenario. The
experiments conducted validate the proposed procedure with
respect to the state of the art for Sentiment Analysis.
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I. INTRODUCTION

PEECH researchers are increasingly focusing on the full
range and variation of speech in order to signd the social
and psychological aspects of a message. This means studying
not just the conventional propositional or linguistic content
but also affective states [1]. Future natural conversational
interfaces, in line with the present needs of conversationa
interaction and everyday speech [2], [3], are hoped to achieve a
major breakthrough in usability by integrating such expressive
speech [4], in both the analysis and the synthesis of con-
versations. Therefore, the new generation of Text-To-Speech
(TTS) systers should autormetically ddiver expressive cues
when synthesising an affective message [5], [6]. Such niche
of research can focus on “how” to render expression in speech
or on “when” to do so [7]. This work is focused on the latter,
since the detection and classif cation of the expression present
in textual input is the requisite f rst step in the fully autonatic
generation of naturally expressive synthetic speech [5], [6],
[8].
The basis of expressiveness in text and speech is quite
diverse, non uniform and even overlapping [9], [10]. Some
researchers in TTS tend to relate expression in speech with
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Fig. 1. Framework of the proposed expressive TTS system following [5],
for autormetically detecting textual affect-related information represented in
the hierarchy of affect [19].

domain (i.e.,, the topic) in text [5], while others prefer to
propose a direct bond with affect [11]-[16], and yet some
others consider that both domain and affect are only disjoint
subsets of expression [6], [7]. The adequacy of these different
approaches might seem to rely on the fdd of application,
e.g.: domain-based expressiveness was used in an advertising
scenario [5], while affect-based expressiveness was used in
news reading [6], [7], [11], [15], [16] and storytelling [12].
In this regard, the sole consideration of the domain as a
reliable proxy for textua expression is more of a specif ¢ and
partia solution to the problem [5], which leads to domain-
transfer problems when a new domain is tested [17]. In
contrast, accounting for the interaction between affect and
text regardless of the domain seens to be more adequate
for conversational interfaces [6], [15], [18], where a single
conversation is usually composed of different topics.
Currently there are many challenges in trandating human
affect into explicit representations. One option is to presuppose
the existence of some suitable taxonomy of affective states
[6]. Such taxonomy typically represents the graded nature of
affective categories, which is generally described in two levels
of detail according to the hierarchy of affect [9], [19], i.e.,
sentiment and emotion levels, see Figure 1. Nevertheless, there
is a lack of consensual def nition of the different qualitative
types (and degrees) of affective states to be considered [20].
For instance, in expressive TTS, text-based prediction of affect
was tackled in [11] aiming to distinguish polarity levels only
between “anger” and “happiness” emotions, while in [13] and
[6] the focus was on detecting a broader range of prototypical
emotions [19], typicaly named “The Big Six” [21] (happy,
sad, afraid, angry, surprised and disgusted). However, the
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Fig. 2. Overview of the Sentiment Analysis framework under study, which
considers both the diversity in the nature of the features extracted from the
text and the diversity in the leaming principles of the classif ers, and sdects
the most effective system for the problem at hand.

direct expression of these six stereotypical emotions per seis
surprisingly unusual in conversational interactions [1]. Then,
over this low level of emotion centred on the leaves of
the hierarchy of affect (see Figure 1), the main meaningful
distinction is the one between overall positive and negative
expressions. This two-class categorisation problem (positive
vs. negative) has traditionally been referred to as Sentiment
Andysis (SA) by the Natural Language Processing (NLP)
research community, see [18] for a comprehensive review.
There are some authors who also consider a neutral sentiment
at the same leve of the hierarchy [19]. TTS applications make
use of this neutral sentiment to generate usual messages that
are not positive nor negative [15], [16], e.g., when reporting
objective information such as a description.

The present work focuses on the categorisation of a plain
input text to informa TTS system about the most appropriate
sentiment (positive, negative and neutral) to autoratically syn-
thesise expressive speach at the sentence levd. Following [15],
[16], we develop a SA approach adapted to the requirements
of the problem at hand. We evauate our approach on two
English corpora labdled with sentiment on a sentence-by-
sentence basis: the Semeval 2007 dataset [22] and a subset of
the Twitter corpus [23]. We validate our proposal with respect
to the state of the art and with SA problenms with a somewhat
different nature, respectively.

The paper is organised as follows. Section II refers to other
works related to processing the affect of input text. Section III
describes the procedure that is proposed to adapt the SA task
to the TTS scenario. Section IV describes the experiments
and analyses the results obtained. Finally, Section V draws
conclusions and discusses future work.

IT. RELATED WORK

The prediction of affect in text is a topic that is mainly
rdated to NLP, but it has also attracted the attention of the
TTS synthesis research community. As far as we know, this
work is one of the f rst attempts to adapt conventional SA
methods to the TTS requirements.

In the TTS scenario, the granularity of the text under
analysis is usually determined to be the sentence, as sentences
are sensibly short textual representations with a rich expressive

content [5], [11]-[13], [15], [16]. By regarding this sentence-
by-sentence basis, natural expressive variations can be consid-
ered within the same paragreph [12].

M oreover, the conventional SA solutions borrowed from the
NLP scenario may need to be adapted to the TTS environment
because they are usually set to work with compilations of long
texts that are not analysed at sentence-leve [18], [24]. Some
previous work has tackled this short text setting with heuristic
approaches by affectively weighting the lexicon and then spot-
ting keywords in the sentences, e.g., see [11], [16], [25], [26].
Other work, instead, proposed using Machine Leaming (ML)
methods to directly leam from previous exanple sentences
[5], [6], [23], [27]29]. It is worth noting that previous work
observed that the | atter methods performed more effectively for
the problem at hand [15], [22]. Therefore, this work focuses
on direct ML methods.

Given that the information provided by a sentence is rather
reduced, some approaches based on the latter ML methods
also proposed using additional texts to infer further links
with affect [6], [22]. Other works, instead, delved into the
relevant characteristics of the available text of analysis without
enlarging the data to process [5], [30]. Ina TTS environment,
which is expected to perform in real time, the SA task shall
not overburden the TTS conversion process. What is nore,
collecting useful text for the problem at hand is diff cult as it
requires many human evaluators [22]. Due to resource limita-
tions, experiments are restricted to existing labelled corpora.
Hence, this work focuses on exploiting only the available short
text of analysis. In any case, though, a comprehensive study
of the size of the corpus and its impact on the computational
paformance is left for future works.

III. SENTIMENT ANALYSIS FOR TTS PURPOSES
A. Framework

This section focuses on reviewing and gathering a set
of features suited to the addressed sentiment classif cation
problem at hand. Firstly, different common features that are
of use to denote the affect in text are described. In order to
obtain them, we have developed EmoLib!, which implements
the framework depicted in Figure 2, but following a pipdine
design pattemn (see Figure 3) due to inter-feature dependencies
and tagging sequentiality. EmoLib is a f exible framework for
building prototypes that allows studying the appropriateness
of different strategies to labd affect in text [15], [16]. It
allows incorporating off ine expert knowledge derived from
psychological studies as well as knowledge leamt from train-
ing examples. What follows is the description of the modules
that build up the processing chain of EnmoL.ib:

1) Lexical analyser: converts the plain input text into
an output token stream. This module is produced with the
JavaCC? parser generator. Additionally, this module spots the
possible affective containers (content words), valence shifters
such as negation words and intensif ers [18] and f Iters out
“stop words” like function words [31].

1http://dtminredis.housing.salle.ur .edu:8080/ErmoLib/
2http;/fjavacc.java.net/
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Fig. 3. Modular framework of the EmoLib processing pipeline. It provides the POS tag, synonyms, sterms, emotional dimensions and predicted sentiment
label to the tokens extracted form the plain input text. ANEW, which stands for “Affective Norms for English Words”, is the dictionary of affect of use, and
VAC, which stands for “Valence, Activation and Control”, represents the emotional dimensions.

2) Sentence splitter: ddimits the sentences through a bi-
nary decision tree following [32]. In general, periods, upper-
case |etters, exclamation points and question marks are good
indicators of sentence boundaries.

3) POS Tagger: determines the function of nouns, verbs
and adjectives (classes of words with a possible affective
content [18]) within the sentence. A statistical approach is
implemented using the Stanford log-linear POS tagger [33].

4) Word-Sense Disambiguator: resolves the meaning of
affective words (i.e., nouns, adjectives and verbs) according
to their context [31]. It uses a semantic similarity measure to
score the senses of an affective word with the context words
using the WordNet ontology [34]. Additionally, the module
retrieves the set of synonyms for the resulting sense in order
to expand the feature space [35].

5) Stemmrer: removes the inf ection of words for indexing
purposes using the Porter stemming agorithm [36]. Sermenti-
cally related words should map to the same stem, base or root
form, and this should compensate for data sparseness.

6) Keyword Spotter: provides the emotional dimensions to
the emotional words using the ANEW dictionary of affect [37].
It considers both the sterms of the lexical instances as well
as their POS tags. Words are mapped into a tridimensional
gpace [9], also known as the circumplex, which def nes the
Valence (positive/negative evaluation), Activation (stimulation
of activity) and Control (submissiveness) features (VAC) of
the affect that they convey [9], [11], [16].

7) Average calculator: computes the averaged emotiona
dimensions for the text of analysis. In the current work, this
is the arithmetic mean of the dimensions at the sentence level
(i.e., a centroid-based approach) [9], [11], [16].

8) Classif er: predicts the most appropriate sentiment label
according to the features extracted from the termms observed
in the text, which is usually taken for a bag of words. The
detzils of this module are thoroughly described in Section
I11-B, which regards the determination and representation of
the rdlevant features, and in Section III-C, which describes the
leaming principles of the classif ers.

9) Formatter: presents the results in a usable form, which
follows a XML spexcif cation [10], ready to be used by the
TTS system that follows. For instance, the module can output

the Speech Synthesis Markup Language [38] or the Enmotion
Markup Language [39].

B. Dimensionality Reduction and Weighting

In sentence-leve Text Classif cation, the relative importance
of features is of great rdevance. But using all the features
together directly often increases the size of the feature space
without providing much satisfactory power (sparseness prob-
lem) [35]. Hence, sdecting and weighting the most rdlevant
features raises the discriminating properties of the data, thus
improving the classif cation effectiveness [27], [31], [35], [40].
These methods are described as follows:

1) Term Sdlection: reduces the dimensionality of the feature
space by sdecting the most rdlevant features, which means
discarding the ones that do not contribute signif cantly to the
dassif cation task [27], [31], [35]. This improves both the
effectiveness of the dassif er as wdl as its computational
performance given the fewer number of features to process
(see Section IV-C). In this work, three global T Sdlection
strategies have been considered: Mutual Informetion (MI),
Chi-square (x?) and Term-Frequency-based Sdection (TFS)
[35]. MI sdects termrbased features that are not uniformly
distributed among the sentiment classes because they are
informative of their dass. x2 measures how much expected
counts and obsarved counts deviate from each other, and TFS
directly sdects the most frequent features.

2) Term Weighting: raises the discriminating power of
catain features without reducing the dimensionality of the
feature space. This process is somewhat complementary to
(and dependent on) Term Sdlection with respect to the criteria
of use. A persistent question regarding the weighting of terms
is their representation of presence versus frequency [18], [24],
[35]. Although the frequency of terms seems to be more useful
as it naturally encodes the presence of tarmrs, the use of binary
weights denoting term presence/absence has comparatively
paformed better in sentiment analysis [18]. In this work,
binary weights are evaluated, as well as a couple of enhanced
frequency-based weights: the Inverse Tem Frequency (ITF)
[5], see Eq. 1, which weighs each tam according to its
prominence within the sentence, and the Relevance Factor
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(RF) [30], see Eq. 2, which weighs the relevance of a tem
regarding the rest of categories.
2]

roet tto

ITF: = log t,

M
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RFt,C = |Og(1+tft) |ng 2+ max(l,

2
tfi,c) @)
where t represents the tam, tf  represents its Tem Frequency,
T represents the vocabulary (tota number of different terms)
and C represents the category of analysis (likewise C repre-
sents any different category).

C. Machine Learning

Regarding the leaming strategy of the text dlassif ers, gen-
erative models explain the datg, and if the modd is correct,
they should yidld the best possible dlassif cation effectiveness
rates [41]. Neverthdess, since the form of the actual modd is
unknown and the training sample does not generally cover the
whole feature space, instead of proposing an endless amount
of possible approximate model's, task-centric approaches based
on discriminating classes are evaluated [35].

Polynomial linear models are proposed in this work for their
simplicity over their (more complex) nonlinear polynomial
counterparts. Nonlinear modds have more parameters to ft
on a limited amount of training data and they are more prone
to make mistakes for small datasets (see [5] for an epirical
evidence of this phenomenon for Text Classif cation (TC) in
a TTS-synthesis scenario). Instead, linear models might be
preferable to separate the bulk of the data [31]. And with the
high dimensional spaces that are typically encountered in text
processing applications, the likdihood of linear separability
increases rapidly [35]. What follows is the description of
severd dassif es with different leaming principles that are
considered for the study:

1) Multinorrial Naive Bayes (MNB): probabilistic generative
approach that builds a language model assuming conditional
independence among the features. In redlity, this assumption
does not hold for text data [24], but even though the probability
estimates are of low quality because of this oversimplif ed
model, its dassif cation decisions are surprisingly good [35].
The MNB combines &ff ciency (optimal time performance)
with good accuracy, hence it is often used as a basdine in
TC and SA research [31], [35].

2) Associative Relational Network - Reduced (ARN-R):
word co-occurrence network-based approach, which constructs
a Vector Space Modd (VSM) with a tem sdection method
“on the fy” based on the observation of test features [5].
This tem sdlection ref nement is reported to improve the
classical VSM for modest-size sentence-based da@a ina TTS
environment [5]. Dense vectors representing the input text and
the class are retrieved (no leaming process is involved) and
evaluated by the cosine similarity measure. The basic hypoth-
esis in using the ARN-R for dassif cation is the contiguity
hypothesis, where terms in the same class form a contiguous
region and regions of different classes do not overlap [35].

3) Latent Semantic Analysis (LSA): similar to the VSM,
but builds a latent semantic space by computing the Singular
Value Decomposition (SVD) of the term-class matrix obtained
from the VSM (i.e,, constructing a low-rank approximation
with its principal eigenvectors) [35]. The cosine similarity
between the class vectors and the query text vectors (obtained
by adding the observed term vectors) is used to make decisions
in the reduced latent space. LSA has been used for emotion
classif caion in a TTS scenario [6] as well as in TC and SA
[22], [31].

4) Multinomial Logistic Regression (MLR): probabilistic
discriminative approach that f ts a set of exponential functions
via the Maximum A Posterioni estimation [42]. MLR obeys
the maximum entropy principle, therefore it does not make
any further assumption beyond what is directly observed in
the training data. M oreover, it makes no assumptions about the
relationships among the features, and so might potentially be
nore effective when conditional independence assumptions are
not met [24], also overcoming the sparseness problem. MLR
has been used for SA in TTS and TC environments [15], [18],
[24]

5) Support Vector Machine (SYM): maximunt+margin dis-
criminative approach that searches the hyperplane (decision
surface in feature space) that is maximally disant from the
class-wise data points. Since SVM is a binary dassifer, a
nulticategorisation strategy has to be considered to dea with
the three sentiment classes. SVM has shown to be superior
with respect to other methods in situations with limited but
suff cient training data [18]. SYM has been used in TC
scenarios [30], [31] as well as in SA [18], [24].

D. Inplications of the affect in text

In generdl, it is the semantics which provide a great ded
of information with respect to the affect in text [18]. For the
problem at hand, two approaches need to be considered in this
regard: plain unigrams alone or a full set of diverse features
[18], [24].

On the one hand, the former approach essentially leads
to moddling words, which are plausibly conceived to be
the smallest meaningful units of affect [43]. Words alone,
modelled as unigrans, are obtained fromthelexical instance of
the tokens. Their consideration in isolation constitutes asinple
Bag-Of-Words (BOW) modd, which does not account for the
order of words appearing in a text [31]. This BOW modd
is sometimes regarded to lack useful information, especially
dealing with short texts in TTS [5]. The atemative approach
is to increase the number of features sdecting multiword
patterns that are particularly discriminative [35]. In this regard,
bigrans (i.e.,, the ordered co-occurrence of two unigrams)
are also considered in the bag of features [24]. Bigrans
are aso reported to be of help to grasp stylistic traits and
structural information (i.e., syntactic) in the text [5], [18]. This
is regarded to be an altermative way to incorporate context [24],
and with the inclusion of POS tags, the analysis is added some
grammatical value [18]. Nevertheless, higher order n-grans
are discarded as they do not appear to contribute much to the
identif cation of affect in the text [18].



TABLE I
PROPERTIES OF THE SEMEVAL 2007 DATASET IN TERMS OF INSTANCE
AND FEATURE COUNTS.

Instance properties Counts
Tota (sentences) 1250
Positive 174
Neutral 764
Negative 312
With repeated words 46
Without stop words 4
Average ength 753
Feature properties | Unigrams | Bigrams
Totd (n-grans) 8115 6865
Vocabulary 4085 6251
Frequent (=5) 226 14

IV. EXPERIMENTS AND RESULTS

To determine the nost effective EnoLib conf guration to
adapt the SA framework to a TTS scenario, the main dataset of
use in this work is the Semeval 2007 for its convenience for the
problem at hand: sentence-based analysis on three categories
of sentiment [22]. In addition, this dataset is sensibly small and
unbalanced, which is challenging for the performance of SA
(note that related works in TC for TTS synthesis have already
managed such characteristics with success [5]). In this work
we aso evaluate a subset of a Twitter corpus to validate our
proposal for two categories of sentiment. Moreover, since the
size of the Twitter dataset is greater, it allows us to study
the impact of having more evaluations for SA on the short
sentence-by-sentence basis.

A. Datasets

1) Serreval 2007 dataset: This dataset consists of a com-
pilation of news headlines (taken for short sentences with less
than 8 words on average) drawn from mgjor newspapers. Its
design criteria highlight its typically high load of affective
content written in a style meant to attract the attention of the
readers [22]. In addition, its short-text form is adequate to
evaluate SA inaTTS scenario where a single label represents
the whole sentence [5]. This corpus is distributed in two sats:
one for trial (training with 250 headlines) and the other for
testing (containing 1000 headlines). This uneven distribution
of its da@ is atiributed to the conmpetition conditions it was
designed for. Nevertheless, considering the whole corpus as
a single set (therefore containing 1250 headlines) is more
appropriate for the following experimentation [6], [16].

An overall description of the properties of the entire dataset
is shown in Table I. Note that the number of sentences (i.e,
corpus instances) with words appearing more than once in a
single sentence is scarce in the corpus (46 sentences out of
1250 yield a rate of 3.68%), and this f gure even drops more
if stop words are f ltered out (0.32%). This fact shows that
differentiating between the presenceffrequency representation
of the features is of litle relevance for this data: in either case,
the information is amost the same (this is strictly true for the
99.68% of the sentences in this corpus).

It is also important to note the richness of the vocabulary
extracted from the data. Half the total number of unigrams
yields the size of the whole unigram set (4085 unigrams), and

TABLE II
PROPERTIES OF THE TWITTER DATASET IN TERMS OF INSTANCE AND
FEATURE COUNTS.

Instance properties Counts
Tota (sentences) 3990
Positive 1990
Negative 2000
With repeated words 1444
Without stop words 576
Average length 13.79
Feature properties | Unigrams | Bigrams
Tod (n-grans) 50849 46859
Vocabulary 7340 29676
Frequent (=5) 1118 1032
TABLE III

SELECTED EXAMPLES OF THE STUDIED CORPORA SHOWING THE
DIFFERENT ANALY SIS SCENARIOS.

Semeval 2007 dataset
Positive "The sweet tune of an anniversary”
Neutral “Bad reasons to be good”
Negative “Borrbers kill shoppers”

Twitter dataset

Positive “had an ameazing day running sushi
shower beach uno on the beach fun”
Negative i couldn bear to watch itand i thought
the ua loss was embarrassing”

in the case of bigrams, these counts are more similar (6251
bigrams). Hence, on average, each term only appears twice
at most in the whole corpus. This lack of frequent features
puts an extra diff culty to the identif cation of sentiment and
therefore supports the proposal of weighting and sdecting the
most relevant ones.

2) Twitter dataset: This dataset consists of a compilation
of tweets (taken for sentences with less than 14 words on
average). This dataset is a subset of a bigger Twitter corpus
[23], where the tweets that share the lexicon and sentiment
label (which is based on the observed emoticons) with the
headlines in the Semeval 2007 dataset have been selected.
Hence, a similar “high load of affective content” characteristic
can be used to describe it. Its sentence-based form is aso
adequateina TTS scenario, but the greater amount of instances
pamits the study of the current approach of SA with a greater
amount of data.

An overall description of the properties of this dataset is
shown in Table II. Note that in this dataset, the number of
tweets with repeated words is rather considerable (1444 out
of 3990), so the assessment of the presence or the frequency
of termrs is well differentiated.

With the Twitter dataset, the richness of the vocabulary is
a rather reduced compared to the Semeval 2007. Note that
the total amount of unigrans is amost 7 times bigger than
the size of the vocabulary, so words are frequendy used and
repegted over the Twitter corpus. This def nes an andlysis
scenario different from the Semeval 2007, where in addition to
having less instances per feature, the classif cation framework
has to deal with the sometimes confusing neutral sentiment
category. Table III ref ects these differences through selected
exanples.
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B. Experimental analysis

To determine the most effective EmoLib conf guration (fea-
tures and classif &) to adapt the SA framework to a TTS
scenario, the following strategies are evaluated. On the one
hand, the features of use contrast two approaches [18]: 1)
the sensible agglomeration of traits in the vector space of
features that are reported to be useful for SA, eg., unigrans,
bigrams, POS tags, stems, synonyms, emotional dimensions
and negation f ags, and 2) the sole consideration of unigrams as
only the essential traits of sentiment in text. All unigrams and
bigrams are weighted, representing the plain lexical instances
of the observed words. POS tags are encoded by appending
the POS to the unigrams such that words like “die NOUN”
and “die VERB" represent two different dimensions in the
feature space. If stemming is considered, the sterms of the
words are represented in the unigrams. Synonyms augment the
dimensionality of the feature space as if they were observed in
the text of analysis. Similary, emotional dimensions augment
the feature space with the overall sentence-level evaluations
of valence, activation and control. If no emotion-signalling
keyword if found in the text, default dimensions corresponding
to the neutral sentiment are used. Finally, if an odd nurmber of
negation adverbs are detected in the sentence, a negation f ag
is set in the feature space.

The specif ¢ implementation in EmoLib of the TC methods
to be evaluated are described hereunder:

« MNB uses Manning's TC def nition for discrete features
(binary weights) [35] and the Weka's general-purpose
NaiveBayesM ultinomial with continuous features [44].

« ARN-R is implemented following [5].

« LSA uses the SVD implementation provided by Ling-
Pipe® to construct a latent sermantic space [45].

« MLR uses the Stochastic Gradient Descent optimisation
procedure provided by LingPipe [42].

« SVM uses the Weka's Sequential Mininmum Optimisation
with a linear kemd and pairwise dassif cation [44].

In TC it is customary to meke use of the F; measure
[31], [35] to compute the dlassif cation effectiveness rate.
This unweighted effectiveness measure is needed to even the
importance of each class regardiess of instance imbalances,
which are especialy present in the Semeval 2007 dataset,
see Table 1. For all F; comparisons evaluated heredfter, the
ANOVA testis applied to detarmine the statistical signif cance
of the results. In order to estimate the F; measure, a 10-fold
cross-validation procedure with mecroaveraging is used for the
two datasets (maintaining the dass distributions in each fold)
[31], [35].

In addition, a train-test procedure is also paformed on
the Semeval 2007 dataset following its original evaluation
conditions [22]. This is to compare the results obtained with
the procedure proposed in this work with the ones reported in
the state of the art. In this altemative setting, the models are
trained with much fewer instances than in the cross-validation
section, see Table IV.

It is to note that the trid part of the Semeval 2007 dataset
has a critical imbalance of instances: the size of the negative

Shttp;//alias-i.comylingpipe/

TABLE IV
PROPERTIES OF THE SEMEVAL 2007 DATASET (TRIAL PART) IN TERMS OF
INSTANCE AND FEATURE COUNTS.

Instance properties Counts
Tota (sentences) 250
Positive 19
Neutral 57
Negative 174
With repeated words 5
Without stop words 1
Average length 7.55
Feature properties | Unigrams | Bigrams
Totd (n-grans) 1638 1388
Vocabulary 1114 1290
Frequent (=5) 22 1
TABLE V

AVERAGE F1 RESULTS WITH THE WHOLE SET OF FEATURES USING
10-FOLD CROSS-VALIDATION (MEAN % STD). IT CONSIDERS UNIGRAMS,
BIGRAMS, POS TAGS, STEMS, SYNONYMS, EMOTIONAL DIMENSIONS AND
NEGATION FLAGS.

Semeval 2007 dataset

- Term Weighting
Classif & \—pgrrey TTF RF
MNB | 5220 % 430 | 5100 £ 393 | 5372 £ 654
ARN-R | 4614 + 633 | 4256 + 510 | 51.28 + 3.82
LSA | 3545+ 664 | 38.10 £ 624 | 3644 + 8.8
MLR | 5432+ 643 | 5358 + 672 | 5466 % 5.14
SVM | 58124 4.15 | 5520 % 516 | 54.67 + 553
Twitter dataset
- Term Weighting
Classfer Birary TTF RF
MNB | 7005 121 | 6914 £ 097 | 6981 £ 1.4
ARN-R | 5539+ 193 | 5631 + 236 | 6829 + 2.37
LSA | 52724 278 | 5140 + 281 | 5688 + 2.12
MLR | 7233+ 151 | 7150 + 126 | 7266 + 1.52
SYM | 7276+ 176 | 7161 + 1.71 | 69.09 + 1.79

class is more than nine times bigger that the size of the positive
dass. This imbalance is much more abrupt than when using
the whole corpus, making it more diff cult to predict the dlass
with the least generality, i.e., the positive, which only has 19
sentences. Also note that the rdlation between the vocabulary
size and the total size of unigrams and bigrams is much greater
for the trial part only than for the whole corpus (as is used
in the cross-validation evauation), which means that words
appear a great deal less in this train-test setting.

C. Experimental results and discussion

1) Cross-validation evaluation: Table V' shows the results
obtained with the whole set of features. From the perspective
of the tem weighting strategy, litle improvements are ob-
served. For a given classif er, al the different term weighting
conf gurations yield a similar effectiveness rate. Exceptionally,
the ARN-R classif er shows a signif cant improvement for
RF with respect to Binary and especialy to ITF (p=0.0004).
A similar behaviour is obsarved for the SYM and Binary-
weighted features, but without signif cance (p=0.2740).

From the perspective of the classif cation strategy, it is to
note that there seem to be two groups of classif ers according
to the overdl dassif cation rates: the successful ones, which
include the MNB, the MLR and the SV M, and the unsuccess-
ful ones, which include the ARN-R and the LSA. It sees



AVERAGE F1 RESULTS WITH PLAIN UNIGRAM FEATURES USING 10-FOLD

TABLE VI

CROSS-VALIDATION (MEAN £ STD).

Semeval 2007 dataset

Term Weighting

Classif&r \—pgre TTF RF
MNB | 5330 £ 705 | 5391 £ 511 | 452 £ 570

ARN-R | 4427 + 682 | 3088 + 530 | 5153 + 532
LSA | 3574+ 886 | 3695+ 628 | 3415+ 646
MLR | 5260+ 757 | 5286+ 7.08 | 5223 + 625
SVM | 5356+ 489 | 5448+ 7.09 | 50.80 £ 6.19

Twitter dataset
- Term Weighting

Classifer ' —pirry TTF RF
MNB | 7114 £ 157 | 6944 £ 153 | 7065 £ 179

ARN-R | 5524 + 231 | 5780+ 221 | 6572 + 2.38
LSA | 53874 267 | 5179+ 265 | 5687 + 242
MLR | 7217+ 176 | 7137 % 155 | 7256 + 1.8
SVM | 7064+ 181 | 7002+ 1.88 | 6932 + 1.9

that for this textual data with a much larger size of features
than examples, it is generally tricky to rely on the cosine
similarity as a measure of relatedness (note that both the ARN-
R and the LSA methods do it), regardless of the tem-feature
space of representation (it is especialy adverse for the reduced
space based on the principal components that the LSA method
provides). Regarding the group of successful classif ers, it is
to note that they al behave similarly. This may be attributed to
overf ting issues, because al the classif ers operate on a very
high dimensional space. Hence, they have a large amount of
parameters to ft, which leaves them with a highly complex
structure that is prone to overft the data. In this regard, it
is reasonable to wonder if the whole set of features gathered
from the literature is appropriate in the setting of this work.

Overf tting may be reduced if the nunmber of training exam-
ples is roughly proportional to the number of features used to
represent the data [31]. In order to evaluate this hypothesis,
only the essential affective informationin text, i.e., plain words
modelled as unigrans [43], is considered in Table VI. It can
be observed that the resulting effectiveness rates essentially
remain the same (for some classif erslike MNB they increase a
litde while decreasing for others like MLR and SVM, without
signif cance, p=0.4667). This shows that the classif ers stll
ovef t the da@. Thus, it can be conduded that there is nmore
than enough affective information in the words alone for the
problem at hand.

Now the successful subset of leaming strategies (i.e.,, MNB,
MLR and SVM, aong with the Tem Weighting methods) is
submitted to specif ¢ TC Feature Seection criteria (M1, X2 and
TFS), to see if applying this dimensionality reduction method
is of help to overcome the ovarf tting problem. The results are
shown in Figure 4 for the Semeval 2007 data, and in Figure
5 for the Twitter data.

For the Semeva 2007 data shown in Figure 4g, it can be
observed that the MNB behaves similarly to the full weighted
feature space (averaged among the feature weighting methods,
F1 = 52.34%) up to a reduction of two orders of megnitude.
Then its effectiveness rates decrease considerably (even for
some conf gurations the precision cannot be computed due
to the lack of predicted labels for the class with the least
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Fig. 4. Effectiveness rates for the Sermeval 2007 dataset, obtained by 10-fold
cross-validation, and using Feature Sdlection methods on unigrams applied
to MNB, MLR and SVM with Binary-weighted festures, ITF and RF. MI
stands for Mutual Information, Chi2 stands for x2 and TFS stands for Term-
Frequency-based Selection.

generality). Thus, MNB just leams enough knowledge from
the overwheming feature space to alow pruning it 100 times
without affecting its effectiveness (for the best conf guration,
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Fig. 5. Effectiveness rates for the Twitter corpus, obtained by 10-fold cross-
validation, and using Feature Selection methods on unigrams applied to MNB,
MLR and SVM with Binary-weighted features, ITF and RF. MI stands for
Mutual Information, Chi2 stands for x2 and TFS stands for Term-Frequency-
based Selection.

55

that is RF weights with x? sdection, F; = 54.75%).
As it can be observed in Figure 4b, the overall behaviour of
the MLR resarbles the MNB. Nevearthdess, this classif er is

more limited with respect to the f nal size of the feature space
as it hardly can work under 100 features. This observation
may ref ect the nead of a minimum amount of examples for
a discriminative gpproach like the MLR, in contrast to the
somewhat more enhanced robustness to a varying amount of
features of a generative approach like the MNB, which is less
affected by this aspect. Moreover, the highest effectiveness
scores for the MNB are slightly better than for the MLR, which
are also observed for the same system conf guration, i.e., RF
with x2 (F1 = 52.86%).

Figure 4c shows how the SVM peforrs very differently
from the previous dassif ers. For the SVM, the number of
features affects its efectiveness unpredictably: any system
conf guration change produces a completdy different result.
For example, for MNB and MLR, a feature space reduction of
an order of megnitude (1000 features) produces all dassif ers
to yield a F; variation within 53-55% (2% difference), while
for SVM, it varies within 49-56% (7% difference, statistically
signif cant, p=0.0044). And this behaviour is observed for the
whole range of reduced features. However, the best conf g-
urations for SVM (F; = 55.69%) are Binary weights with
MI and x? sdections, which improve the former results with
MNB by 1% (but non-stetistically signif cant, p=0.2446).

Regarding the results for the Twitter data shown in Figure
5, the shape of the curve for the MNB (Figure 5a) and
SVM (Figure 5¢) is dmost the same. It shows a bump of
improvement around 1000 features for the MNB with binary-
weighted features (F; = 71.88%) and for the SVM with
RF weights and x2 (F1 = 71.56%). The difference among
the effectiveness rates for the SVM classif er is signif cant
(p=0.0311) for 1000 relevant features. Regarding the MLR
dassif er, there is no improvement in its effectiveness, but
its paformance is maintained for 1000 features using RF
with MI and x2 (F1 = 72.64%). For this dassif er, there
is no signif cant difference among the effectiveness rates for
its different conf gurations (p=0.0762). These overdll similar
effectiveness trends validate the methodology proposed in this
work for a different environment with more available data.

2) Train-test evaluation: The effectiveness of the classif ers
with the whole set of features is shown in Table VIL It
can be observed that again most of them yidd similar rates,
which may indicate overf ting problems, and none of them
improves the best F; result published in the state of the art
for sentiment classif cation with the Semeval 2007 corpus,
which is set at 42.43% with a Naive Bayes dassif er [22].
Exceptionally, the MLR could not predict the class with the
least generality, which denotes the requirement of a minimum
amount of examples for this classif er.

In contrast, the reduced feature setting with unigrams alone
(see Table VIII) enables the dassif s to peform better,
and this revedls the two groups of classif ers (the successful
ones and the others) already observed with the whole dataset.
Note that all the successful classif ers improve the basdine
effectiveness rate at least by 2%, and they again appear to
be the MNB, MLR and SVM. Specif caly, the MNB with
binary-weighted unigrams and the MLR with RF yied the
best improvement margin with respect to the state of the art,
which is of 7%



TABLE VI
F1 RESULTS WITH THE WHOLE SET OF FEATURES USING TRAIN-TEST
VALIDATION. N/A STANDS FOR NOT AVAILABLE DUE TO NOT PREDICTING
THE CLASS WITH THE LEAST GENERALITY.

. Term Weighting
Classif er Birary | TTF

MNB 4026 | 4220 | N/A
ARN-R 3738 | 3340 | 39.36

LSA 3344 | 3481 | 30.26

MLR N/A N/A N/A

SVM 39.27 | 37.76 | 38%4

TABLE VIII

F1 RESULTS WITH PLAIN UNIGRAM FEATURES USING TRAIN-TEST
VALIDATION. N/A STANDS FOR NOT AVAILABLE DUE TO NOT PREDICTING
THE CLASS WITH THE LEAST GENERALITY.

- Term Weighting
Classifer (g —TTF T RF
MNB 4889 | 4541 N/A
ARN-R 3726 | 3232 | 4225
LSA 37.71 3763 | 31.9%
MLR N/A N/A 49.26
SVM 4530 | 36.83 N/A

Next, the feature sdection criteria are applied to the
unigram-weighted space in order to improve the former ef-
fectiveness rates (see Figure 6). At f rst sight, note that only
the MNB ddivers some sort of trend while MLR and SVM
behave unpredictably according to the number of sdected
features. This could be attributed to the simplicity of this
successful generative approach in contrast to the complexity of
the others. However, all the experiments coincide with having
a maximum effectiveness rate of 50% when dealing with 50
features, and regardless of the feature sedlection method. This
factis observed for the MNB with RF, MLR withRF and SVM
Binary weights. In the end, all these three methods improve
the basdine F; rate in the state of the art (42.43%) by almost
8%.

In summery, the most effective procedure to adapt the
corventional SA methods to the TTS requirements is to
consider plain unigrans alone with a successful dassif er like
MNB, MLR or SVM. What is more, considering appropriate
feature weighting and sdlection procedures, not only improves
the effectiveness of the system a litde, but also enhances
its computational performance as it processes fewer feature
dimensions.

V. CONCLUSIONS

The identif cation of affect in text is a complex problem
that has many facets to consider. In this work, we performed
an exhaustive and comprehensive study to tackle a particular
threeclass sentiment analysis problem, at the sentence levd,
framed by a TTS scenario and without using additional textual
data. As far as we know, this work is one of the f rst attempts
to adapt conventional SA methods to the TTS requirements.
Our expeariments indicate that under such problem settings,
the success of a good classif er such as MNB, MLR or SVM,
greatly depends on the representation of the features, which
helps the classif er to not overf t the data.

This work shows how considering the most rdevant un-
igrams done (with adequate weighting methods) results in
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Fig. 6. Effectiveness rates for the Semeval 2007 dataset, obtained by train-test
validation, and using Feature Sdlection methods on unigrams applied to MNB,
MLR and SVM with Binary-weighted features, ITF and RF. M1 stands for
Mutual Information, Chi2 stands for x2 and TFS stands for Term-Frequency-
based Selection.

better classif cation effectiveness compared to using addi-
tional features such as bigrams, POS tags, stems, synonyins,
emotional dimensions and negations. We have evaluated our
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experiments with two corpora analysed with sentiment at the
sentence leve, but with differing amounts of available data
and number of categories (evenly and unevenly distributed
in the corpora). Although the results obtained display similar
effectiveness trends for the various conf gurations, different
effectiveness levels are observed according to the number of
addressed categories and the amount of available data. For
the particular problem tackled in this work, the successful
classif cation strategies yidd a similar F; efectiveness rate
of 56% with the Semeval 2007 dataset, and 73% with the
Twitter data. Finally, it is worth noting that setting the same
evaluation conditions as the SA task for the Semeval 2007,
the application of the sentiment analysis procedure proposed
in this work improves the reported maximum effectiveness
rates by 8%

In our future work we will carefully study increasing the
size of the training data regarding its computational perfor-
mance, as it seems to smooth the effectiveness rate in SA.
What is more, we plan to evaluate our results with a TTS
system, with other languages and consider a temporal analysis
for the evolution of a conversation.
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