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Abstract—Current research to improvestateof theart Text-To-
Speech (TTS) synthesis studies both the processing of input text
and the ability to render natural expressive speech. Focusing on
the former as a front-end task in the production of synthetic
speech, this article investigates the proper adaptation of a
Sentiment Analysisprocedure(positive/neutral/negative) that can
then be used as an input feature for expressive speech synthesis.
Tothisend,weevaluatedifferent combinationsof textual features
and classif ers todeterminethemost appropriateadaptation pro-
cedure. Theeffectivenessof this schemefor Sentiment Analysis is
evaluated using the Semeval 2007 dataset and a Twitter corpus,
for their affective nature and their granularity at the sentence
level, which is appropriate for an expressive TTS scenario. The
experiments conducted validate the proposed procedure with
respect to the state of the art for Sentiment Analysis.
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I. INTRODUCTION

SPEECH researchers are increasingly focusing on the fullrangeand variation of speech in order to signal thesocial
and psychological aspects of amessage. Thismeans studying
not just the conventional propositional or linguistic content
but also affective states [1]. Future natural conversational
interfaces, in line with the present needs of conversational
interactionandeverydayspeech[2],[3],arehopedtoachievea
major breakthrough inusability by integratingsuchexpressive
speech [4], in both the analysis and the synthesis of con-
versations. Therefore, the new generation of Text-To-Speech
(TTS) systems should automatically deliver expressive cues
when synthesising an affective message [5], [6]. Such niche
of researchcan focuson“how” to render expression inspeech
or on “when” to do so [7]. Thiswork is focused on the latter,
since thedetectionand classif cationof theexpressionpresent
in textual input is the requisite f rst step in the fullyautomatic
generation of naturally expressive synthetic speech [5], [6],
[8].
The basis of expressiveness in text and speech is quite

diverse, non uniform and even overlapping [9], [10]. Some
researchers in TTS tend to relate expression in speech with
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Fig. 1. Framework of the proposed expressive TTS system following [5],
for automatically detecting textual affect-related information represented in
the hierarchy of affect [19].

domain (i.e., the topic) in text [5], while others prefer to
propose a direct bond with affect [11]–[16], and yet some
others consider that both domain and affect are only disjoint
subsets of expression [6], [7]. Theadequacy of thesedifferent
approaches might seem to rely on the f eld of application,
e.g.: domain-based expressiveness was used in an advertising
scenario [5], while affect-based expressiveness was used in
news reading [6], [7], [11], [15], [16] and storytelling [12].
In this regard, the sole consideration of the domain as a
reliable proxy for textual expression ismoreof a specif c and
partial solution to the problem [5], which leads to domain-
transfer problems when a new domain is tested [17]. In
contrast, accounting for the interaction between affect and
text regardless of the domain seems to be more adequate
for conversational interfaces [6], [15], [18], where a single
conversation is usually composed of different topics.
Currently there are many challenges in translating human

affect intoexplicit representations.Oneoptionistopresuppose
the existence of some suitable taxonomy of affective states
[6]. Such taxonomy typically represents the graded nature of
affectivecategories,which isgenerally described in two levels
of detail according to the hierarchy of affect [9], [19], i.e.,
sentimentandemotionlevels,seeFigure1.Nevertheless, there
is a lack of consensual def nition of the different qualitative
types (and degrees) of affective states to be considered [20].
For instance, inexpressiveTTS, text-basedpredictionof affect
was tackled in [11] aiming to distinguish polarity levels only
between “anger” and “happiness” emotions, while in [13] and
[6] the focuswasondetecting abroader rangeof prototypical
emotions [19], typically named “The Big Six” [21] (happy,
sad, afraid, angry, surprised and disgusted). However, the
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Fig. 2. Overview of the Sentiment Analysis framework under study, which
considers both the diversity in the nature of the features extracted from the
text and the diversity in the learning principles of the classif ers, and selects
themost effective systemfor the problemat hand.

direct expression of these six stereotypical emotions per se is
surprisingly unusual in conversational interactions [1]. Then,
over this low level of emotion centred on the leaves of
the hierarchy of affect (see Figure 1), the main meaningful
distinction is the one between overall positive and negative
expressions. This two-class categorisation problem (positive
vs. negative) has traditionally been referred to as Sentiment
Analysis (SA) by the Natural Language Processing (NLP)
research community, see [18] for a comprehensive review.
Therearesomeauthorswho also consider aneutral sentiment
at thesamelevel of thehierarchy [19]. TTSapplicationsmake
use of this neutral sentiment to generate usual messages that
are not positive nor negative [15], [16], e.g., when reporting
objective information such as a description.
The present work focuses on the categorisation of a plain

input text to informaTTS systemabout themost appropriate
sentiment(positive,negativeandneutral) toautomatically syn-
thesiseexpressivespeechat thesentencelevel.Following[15],
[16], we develop a SA approach adapted to the requirements
of the problem at hand. We evaluate our approach on two
English corpora labelled with sentiment on a sentence-by-
sentencebasis: theSemeval 2007dataset [22] and asubset of
theTwitter corpus [23].Wevalidateour proposal with respect
to the stateof theart andwithSA problemswith asomewhat
different nature, respectively.
Thepaper is organised as follows. Section II refers to other

works related to processing theaffect of input text. Section III
describes the procedure that is proposed to adapt theSA task
to the TTS scenario. Section IV describes the experiments
and analyses the results obtained. Finally, Section V draws
conclusions and discusses futurework.

II. RELATED WORK

The prediction of affect in text is a topic that is mainly
related to NLP, but it has also attracted the attention of the
TTS synthesis research community. As far as we know, this
work is one of the f rst attempts to adapt conventional SA
methods to the TTS requirements.
In the TTS scenario, the granularity of the text under

analysis isusually determined to bethesentence, as sentences
aresensibly short textual representationswitharichexpressive

content [5], [11]–[13], [15], [16]. By regarding this sentence-
by-sentencebasis, natural expressivevariationscanbeconsid-
ered within the same paragraph [12].
Moreover, theconventional SA solutionsborrowedfromthe

NLP scenariomayneed tobeadapted to theTTSenvironment
becausethey areusually set toworkwithcompilationsof long
texts that are not analysed at sentence-level [18], [24]. Some
previouswork has tackled this short text settingwithheuristic
approachesby affectivelyweighting thelexiconandthenspot-
ting keywords in thesentences, e.g., see [11], [16], [25], [26].
Other work, instead, proposed using Machine Learning (ML)
methods to directly learn from previous example sentences
[5], [6], [23], [27]–[29]. It is worth noting that previouswork
observedthatthelattermethodsperformedmoreeffectively for
the problemat hand [15], [22]. Therefore, this work focuses
on direct ML methods.
Given that the information provided by a sentence is rather

reduced, some approaches based on the latter ML methods
also proposed using additional texts to infer further links
with affect [6], [22]. Other works, instead, delved into the
relevantcharacteristicsof theavailabletextof analysiswithout
enlarging thedata to process [5], [30]. In aTTSenvironment,
which is expected to perform in real time, the SA task shall
not overburden the TTS conversion process. What is more,
collecting useful text for the problemat hand is diff cult as it
requiresmany humanevaluators [22]. Due to resource limita-
tions, experiments are restricted to existing labelled corpora.
Hence, thiswork focusesonexploitingonly theavailableshort
text of analysis. In any case, though, a comprehensive study
of the size of the corpus and its impact on the computational
performance is left for futureworks.

III. SENTIMENT ANALYSIS FOR TTS PURPOSES

A. Framework

This section focuses on reviewing and gathering a set
of features suited to the addressed sentiment classif cation
problem at hand. Firstly, different common features that are
of use to denote the affect in text are described. In order to
obtain them, wehavedeveloped EmoLib1, which implements
the framework depicted in Figure 2, but following a pipeline
designpattern(seeFigure3)dueto inter-featuredependencies
and tagging sequentiality. EmoLib is a f exible framework for
building prototypes that allows studying the appropriateness
of different strategies to label affect in text [15], [16]. It
allows incorporating off ine expert knowledge derived from
psychological studies as well as knowledge learnt fromtrain-
ing examples. What follows is the description of themodules
that build up the processing chain of EmoLib:
1) Lexical analyser: converts the plain input text into

an output token stream. This module is produced with the
JavaCC2 parser generator. Additionally, thismodule spots the
possible affective containers (content words), valence shifters
such as negation words and intensif ers [18] and f lters out
“stop words” like function words [31].

1http://dtminredis.housing.salle.url.edu:8080/EmoLib/
2http://javacc.java.net/
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Fig. 3. Modular framework of the EmoLib processing pipeline. It provides the POS tag, synonyms, stems, emotional dimensions and predicted sentiment
label to the tokens extracted formthe plain input text. ANEW, which stands for “AffectiveNorms for EnglishWords”, is the dictionary of affect of use, and
VAC, which stands for “Valence, Activation and Control”, represents the emotional dimensions.

2) Sentence splitter: delimits the sentences through a bi-
nary decision tree following [32]. In general, periods, upper-
case letters, exclamation points and question marks are good
indicators of sentence boundaries.
3) POS Tagger: determines the function of nouns, verbs

and adjectives (classes of words with a possible affective
content [18]) within the sentence. A statistical approach is
implemented using the Stanford log-linear POS tagger [33].
4) Word-Sense Disambiguator: resolves the meaning of

affective words (i.e., nouns, adjectives and verbs) according
to their context [31]. It uses a semantic similarity measure to
score the senses of an affective word with the context words
using the WordNet ontology [34]. Additionally, the module
retrieves the set of synonyms for the resulting sense in order
to expand the feature space [35].
5) Stemmer: removes the inf ection of words for indexing

purposes using the Porter stemming algorithm[36]. Semanti-
cally relatedwords shouldmap to thesamestem, baseor root
form, and this should compensate for data sparseness.
6) Keyword Spotter: provides the emotional dimensions to

theemotional wordsusingtheANEWdictionaryof affect[37].
It considers both the stems of the lexical instances as well
as their POS tags. Words are mapped into a tridimensional
space [9], also known as the circumplex, which def nes the
Valence (positive/negativeevaluation), Activation (stimulation
of activity) and Control (submissiveness) features (VAC) of
the affect that they convey [9], [11], [16].
7) Average calculator: computes the averaged emotional

dimensions for the text of analysis. In the current work, this
is thearithmetic mean of thedimensions at the sentence level
(i.e., a centroid-based approach) [9], [11], [16].
8) Classif er: predicts themost appropriate sentiment label

according to the features extracted from the terms observed
in the text, which is usually taken for a bag of words. The
details of this module are thoroughly described in Section
III-B, which regards the determination and representation of
therelevant features, and inSection III-C,whichdescribes the
learning principles of the classif ers.
9) Formatter: presents the results in a usable form, which

follows a XML specif cation [10], ready to be used by the
TTS systemthat follows. For instance, themodule can output

the Speech Synthesis Markup Language [38] or the Emotion
Markup Language [39].

B. Dimensionality Reduction andWeighting

Insentence-level TextClassif cation, therelativeimportance
of features is of great relevance. But using all the features
together directly often increases the size of the feature space
without providing much satisfactory power (sparseness prob-
lem) [35]. Hence, selecting and weighting the most relevant
features raises the discriminating properties of the data, thus
improvingtheclassif cationeffectiveness[27], [31], [35], [40].
Thesemethods are described as follows:
1)TermSelection: reduces thedimensionality of thefeature

space by selecting the most relevant features, which means
discarding the ones that do not contribute signif cantly to the
classif cation task [27], [31], [35]. This improves both the
effectiveness of the classif er as well as its computational
performance given the fewer number of features to process
(see Section IV-C). In this work, three global TermSelection
strategies have been considered: Mutual Information (MI),
Chi-square (χ2) and Term-Frequency-based Selection (TFS)
[35]. MI selects term-based features that are not uniformly
distributed among the sentiment classes because they are
informative of their class. χ2 measures how much expected
counts and observed counts deviate fromeach other, and TFS
directly selects themost frequent features.
2) Term Weighting: raises the discriminating power of

certain features without reducing the dimensionality of the
feature space. This process is somewhat complementary to
(anddependent on) TermSelectionwith respect to thecriteria
of use. A persistent question regarding theweighting of terms
is their representationof presenceversus frequency [18], [24],
[35].Althoughthefrequencyof termsseemstobemoreuseful
as it naturally encodes thepresenceof terms, theuseof binary
weights denoting term presence/absence has comparatively
performed better in sentiment analysis [18]. In this work,
binary weights areevaluated, aswell as acoupleof enhanced
frequency-based weights: the Inverse Term Frequency (ITF)
[5], see Eq. 1, which weighs each term according to its
prominence within the sentence, and the Relevance Factor
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(RF) [30], see Eq. 2, which weighs the relevance of a term
regarding the rest of categories.

ITFt = log
P
t0∈T tf t0
tf t

(1)

RFt,C = log(1+ tf t) log2 2+
tf t,C

max(1,
P
tf t,C̄ )

(2)

wheret represents theterm, tf represents itsTermFrequency,
T represents the vocabulary (total number of different terms)
and C represents the category of analysis (likewise C̄ repre-
sents any different category).

C. Machine Learning

Regarding the learning strategy of the text classif ers, gen-
erative models explain the data, and if the model is correct,
they should yield the best possible classif cation effectiveness
rates [41]. Nevertheless, since the formof theactual model is
unknownand thetraining sampledoesnot generally cover the
whole feature space, instead of proposing an endless amount
of possibleapproximatemodels, task-centric approachesbased
on discriminating classes are evaluated [35].
Polynomial linearmodelsareproposedinthiswork for their

simplicity over their (more complex) nonlinear polynomial
counterparts. Nonlinear models have more parameters to f t
on a limited amount of training dataand they aremoreprone
to makemistakes for small datasets (see [5] for an empirical
evidence of this phenomenon for Text Classif cation (TC) in
a TTS-synthesis scenario). Instead, linear models might be
preferable to separate the bulk of the data [31]. And with the
high dimensional spaces that are typically encountered in text
processing applications, the likelihood of linear separability
increases rapidly [35]. What follows is the description of
several classif ers with different learning principles that are
considered for the study:
1)Multinomial NaiveBayes(MNB):probabilistic generative

approach that builds a language model assuming conditional
independence among the features. In reality, this assumption
doesnotholdfor textdata[24],buteventhoughtheprobability
estimates are of low quality because of this oversimplif ed
model, its classif cation decisions are surprisingly good [35].
The MNB combines eff ciency (optimal time performance)
with good accuracy, hence it is often used as a baseline in
TC and SA research [31], [35].
2) Associative Relational Network - Reduced (ARN-R):

wordco-occurrencenetwork-basedapproach,whichconstructs
a Vector Space Model (VSM) with a term selection method
“on the f y” based on the observation of test features [5].
This term selection ref nement is reported to improve the
classical VSM for modest-size sentence-based data in a TTS
environment [5].Densevectors representing the input text and
the class are retrieved (no learning process is involved) and
evaluated by thecosinesimilarity measure. Thebasic hypoth-
esis in using the ARN-R for classif cation is the contiguity
hypothesis, where terms in the same class forma contiguous
region and regions of different classes do not overlap [35].

3) Latent Semantic Analysis (LSA): similar to the VSM,
but builds a latent semantic space by computing the Singular
ValueDecomposition(SVD)of theterm-classmatrix obtained
from the VSM (i.e., constructing a low-rank approximation
with its principal eigenvectors) [35]. The cosine similarity
between theclass vectors and thequery text vectors (obtained
byaddingtheobservedtermvectors) isusedtomakedecisions
in the reduced latent space. LSA has been used for emotion
classif cation in a TTS scenario [6] as well as in TC and SA
[22], [31].
4) Multinomial Logistic Regression (MLR): probabilistic

discriminativeapproach that f ts aset of exponential functions
via the Maximum A Posteriori estimation [42]. MLR obeys
the maximum entropy principle, therefore it does not make
any further assumption beyond what is directly observed in
thetrainingdata.Moreover, itmakesnoassumptionsabout the
relationships among the features, and so might potentially be
moreeffectivewhenconditional independenceassumptionsare
not met [24], also overcoming the sparseness problem. MLR
hasbeenused for SA inTTSandTC environments [15], [18],
[24]
5) Support Vector Machine (SVM): maximum-margin dis-

criminative approach that searches the hyperplane (decision
surface in feature space) that is maximally distant from the
class-wise data points. Since SVM is a binary classif er, a
multicategorisation strategy has to be considered to deal with
the three sentiment classes. SVM has shown to be superior
with respect to other methods in situations with limited but
suff cient training data [18]. SVM has been used in TC
scenarios [30], [31] as well as in SA [18], [24].

D. Implications of the affect in text

In general, it is the semantics which provide a great deal
of information with respect to the affect in text [18]. For the
problemathand, twoapproachesneed tobeconsidered in this
regard: plain unigrams alone or a full set of diverse features
[18], [24].
On the one hand, the former approach essentially leads

to modelling words, which are plausibly conceived to be
the smallest meaningful units of affect [43]. Words alone,
modelledasunigrams,areobtainedfromthelexical instanceof
thetokens.Their considerationinisolationconstitutesasimple
Bag-Of-Words (BOW)model, which does not account for the
order of words appearing in a text [31]. This BOW model
is sometimes regarded to lack useful information, especially
dealing with short texts in TTS [5]. The alternative approach
is to increase the number of features selecting multiword
patternsthatareparticularlydiscriminative[35]. Inthisregard,
bigrams (i.e., the ordered co-occurrence of two unigrams)
are also considered in the bag of features [24]. Bigrams
are also reported to be of help to grasp stylistic traits and
structural information(i.e., syntactic) in thetext [5], [18].This
isregardedtobeanalternativewayto incorporatecontext[24],
andwiththeinclusionof POStags, theanalysis isaddedsome
grammatical value [18]. Nevertheless, higher order n-grams
are discarded as they do not appear to contributemuch to the
identif cation of affect in the text [18].
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TABLE I
PROPERTIES OF THE SEMEVAL 2007DATASET IN TERMS OF INSTANCE

AND FEATURE COUNTS.

Instance properties Counts
Total (sentences) 1250
Positive 174
Neutral 764
Negative 312

With repeated words 46
Without stop words 4
Average length 7.53
Feature properties Unigrams Bigrams
Total (n-grams) 8115 6865
Vocabulary 4085 6251
Frequent (≥5) 226 14

IV. EXPERIMENTS AND RESULTS

To determine the most effective EmoLib conf guration to
adapt theSA framework toaTTSscenario, themaindatasetof
useinthiswork istheSemeval 2007for itsconveniencefor the
problemat hand: sentence-based analysis on three categories
of sentiment[22].Inaddition, thisdataset issensiblysmall and
unbalanced, which is challenging for the performance of SA
(note that relatedworks in TC for TTS synthesis havealready
managed such characteristics with success [5]). In this work
we also evaluate a subset of a Twitter corpus to validate our
proposal for two categories of sentiment. Moreover, since the
size of the Twitter dataset is greater, it allows us to study
the impact of having more evaluations for SA on the short
sentence-by-sentence basis.

A. Datasets

1) Semeval 2007 dataset: This dataset consists of a com-
pilationof newsheadlines (taken for short sentenceswith less
than 8 words on average) drawn frommajor newspapers. Its
design criteria highlight its typically high load of affective
content written in a stylemeant to attract the attention of the
readers [22]. In addition, its short-text form is adequate to
evaluateSA inaTTS scenariowhereasingle label represents
thewhole sentence [5]. This corpus is distributed in two sets:
one for trial (training with 250 headlines) and the other for
testing (containing 1000 headlines). This uneven distribution
of its data is attributed to the competition conditions it was
designed for. Nevertheless, considering the whole corpus as
a single set (therefore containing 1250 headlines) is more
appropriate for the following experimentation [6], [16].
Anoverall descriptionof thepropertiesof theentiredataset

is shown in Table I. Note that the number of sentences (i.e.,
corpus instances) with words appearing more than once in a
single sentence is scarce in the corpus (46 sentences out of
1250 yield a rate of 3.68%), and this f gure even dropsmore
if stop words are f ltered out (0.32%). This fact shows that
differentiating between the presence/frequency representation
of thefeatures isof littlerelevancefor thisdata:ineither case,
the information is almost the same(this is strictly true for the
99.68%of the sentences in this corpus).
It is also important to note the richness of the vocabulary

extracted from the data. Half the total number of unigrams
yields thesizeof thewholeunigramset (4085unigrams), and

TABLE II
PROPERTIES OF THE TWITTER DATASET IN TERMS OF INSTANCE AND

FEATURE COUNTS.

Instance properties Counts
Total (sentences) 3990
Positive 1990
Negative 2000

With repeated words 1444
Without stop words 576
Average length 13.79
Feature properties Unigrams Bigrams
Total (n-grams) 50849 46859
Vocabulary 7340 29676
Frequent (≥5) 1118 1032

TABLE III
SELECTED EXAMPLES OF THE STUDIED CORPORA SHOWING THE

DIFFERENT ANALYSIS SCENARIOS.

Semeval 2007 dataset
Positive “The sweet tune of an anniversary”
Neutral “Bad reasons to be good”
Negative “Bombers kill shoppers”

Twitter dataset
Positive “had an amaazing day running sushi
shower beach uno on the beach fun”
Negative“i couldnbear towatch itand i thought
the ua loss was embarrassing”

in the case of bigrams, these counts are more similar (6251
bigrams). Hence, on average, each term only appears twice
at most in the whole corpus. This lack of frequent features
puts an extra diff culty to the identif cation of sentiment and
thereforesupports theproposal of weighting and selecting the
most relevant ones.
2) Twitter dataset: This dataset consists of a compilation

of tweets (taken for sentences with less than 14 words on
average). This dataset is a subset of a bigger Twitter corpus
[23], where the tweets that share the lexicon and sentiment
label (which is based on the observed emoticons) with the
headlines in the Semeval 2007 dataset have been selected.
Hence, asimilar “high loadof affectivecontent” characteristic
can be used to describe it. Its sentence-based form is also
adequateinaTTSscenario,butthegreateramountof instances
permits thestudy of thecurrent approachof SA withagreater
amount of data.
An overall description of the properties of this dataset is

shown in Table II. Note that in this dataset, the number of
tweets with repeated words is rather considerable (1444 out
of 3990), so the assessment of the presence or the frequency
of terms is well differentiated.
With the Twitter dataset, the richness of the vocabulary is

a rather reduced compared to the Semeval 2007. Note that
the total amount of unigrams is almost 7 times bigger than
the size of the vocabulary, so words are frequently used and
repeated over the Twitter corpus. This def nes an analysis
scenariodifferent fromtheSemeval 2007,whereinadditionto
having less instances per feature, the classif cation framework
has to deal with the sometimes confusing neutral sentiment
category. Table III ref ects these differences through selected
examples.
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B. Experimental analysis
To determinethemost effectiveEmoLib conf guration (fea-

tures and classif er) to adapt the SA framework to a TTS
scenario, the following strategies are evaluated. On the one
hand, the features of use contrast two approaches [18]: 1)
the sensible agglomeration of traits in the vector space of
features that are reported to be useful for SA, e.g., unigrams,
bigrams, POS tags, stems, synonyms, emotional dimensions
andnegationf ags,and2)thesoleconsiderationof unigramsas
only theessential traits of sentiment in text. All unigramsand
bigrams areweighted, representing the plain lexical instances
of the observed words. POS tags are encoded by appending
the POS to the unigrams such that words like “die NOUN”
and “die VERB” represent two different dimensions in the
feature space. If stemming is considered, the stems of the
wordsarerepresented intheunigrams.Synonymsaugment the
dimensionality of thefeaturespaceas if theywereobserved in
the text of analysis. Similarly, emotional dimensions augment
the feature space with the overall sentence-level evaluations
of valence, activation and control. If no emotion-signalling
keyword if foundinthetext,defaultdimensionscorresponding
to theneutral sentiment areused. Finally, if anoddnumber of
negation adverbs are detected in the sentence, a negation f ag
is set in the feature space.
Thespecif c implementation in EmoLib of theTC methods

to be evaluated are described hereunder:
• MNB usesManning’s TC def nition for discrete features
(binary weights) [35] and the Weka’s general-purpose
NaiveBayesMultinomial with continuous features [44].

• ARN-R is implemented following [5].
• LSA uses the SVD implementation provided by Ling-
Pipe3 to construct a latent semantic space [45].

• MLR uses the Stochastic Gradient Descent optimisation
procedure provided by LingPipe [42].

• SVM uses theWeka’sSequential MinimumOptimisation
with a linear kernel and pairwise classif cation [44].

In TC it is customary to make use of the F1 measure
[31], [35] to compute the classif cation effectiveness rate.
This unweighted effectiveness measure is needed to even the
importance of each class regardless of instance imbalances,
which are especially present in the Semeval 2007 dataset,
see Table I. For all F1 comparisons evaluated hereafter, the
ANOVA test isapplied todeterminethestatistical signif cance
of the results. In order to estimate the F1 measure, a 10-fold
cross-validationprocedurewithmacroaveraging isusedfor the
two datasets (maintaining the class distributions in each fold)
[31], [35].
In addition, a train-test procedure is also performed on

the Semeval 2007 dataset following its original evaluation
conditions [22]. This is to compare the results obtained with
theprocedureproposed in thiswork with theones reported in
the state of the art. In this alternative setting, themodels are
trainedwithmuch fewer instances than in thecross-validation
section, see Table IV.
It is to note that the trial part of the Semeval 2007 dataset

has a critical imbalance of instances: the size of the negative

3http://alias-i.com/lingpipe/

TABLE IV
PROPERTIES OF THE SEMEVAL 2007DATASET (TRIAL PART) IN TERMS OF

INSTANCE AND FEATURE COUNTS.

Instance properties Counts
Total (sentences) 250
Positive 19
Neutral 57
Negative 174

With repeated words 5
Without stop words 1
Average length 7.55
Feature properties Unigrams Bigrams
Total (n-grams) 1638 1388
Vocabulary 1114 1290
Frequent (≥5) 22 1

TABLE V
AVERAGE F1 RESULTSWITH THE WHOLE SET OF FEATURES USING

10-FOLD CROSS-VALIDATION (MEAN ± STD). IT CONSIDERS UNIGRAMS,
BIGRAMS, POSTAGS, STEMS, SYNONYMS, EMOTIONAL DIMENSIONS AND

NEGATION FLAGS.

Semeval 2007 dataset

Classif er TermWeighting
Binary ITF RF

MNB 52.20 ± 4.30 51.09 ± 3.93 53.72 ± 6.54
ARN-R 46.14 ± 6.33 42.56 ± 5.10 51.28 ± 3.82
LSA 35.45 ± 6.64 38.10 ± 6.24 36.44 ± 8.28
MLR 54.32 ± 6.43 53.58 ± 6.72 54.66 ± 5.14
SVM 58.12 ± 4.15 55.20 ± 5.16 54.67 ± 5.53

Twitter dataset

Classif er TermWeighting
Binary ITF RF

MNB 70.05 ± 1.21 69.14 ± 0.97 69.81 ± 1.34
ARN-R 55.39 ± 1.93 56.31 ± 2.36 68.29 ± 2.37
LSA 52.72 ± 2.78 51.40 ± 2.81 56.88 ± 2.12
MLR 72.33 ± 1.51 71.59 ± 1.26 72.66 ± 1.52
SVM 72.76 ± 1.76 71.61 ± 1.71 69.09 ± 1.79

classismorethanninetimesbigger thatthesizeof thepositive
class. This imbalance is much more abrupt than when using
thewhole corpus,making itmorediff cult to predict the class
with the least generality, i.e., the positive, which only has 19
sentences. Also note that the relation between the vocabulary
sizeandthetotal sizeof unigramsandbigramsismuchgreater
for the trial part only than for the whole corpus (as is used
in the cross-validation evaluation), which means that words
appear a great deal less in this train-test setting.

C. Experimental results and discussion
1) Cross-validation evaluation: Table V shows the results

obtained with thewhole set of features. Fromthe perspective
of the term weighting strategy, little improvements are ob-
served. For a given classif er, all the different termweighting
conf gurationsyieldasimilar effectivenessrate.Exceptionally,
the ARN-R classif er shows a signif cant improvement for
RF with respect to Binary and especially to ITF (p=0.0004).
A similar behaviour is observed for the SVM and Binary-
weighted features, but without signif cance (p=0.2740).
From the perspective of the classif cation strategy, it is to

note that there seemto be two groups of classif ers according
to the overall classif cation rates: the successful ones, which
include theMNB, theMLR and theSVM, and theunsuccess-
ful ones, which include the ARN-R and the LSA. It seems
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TABLE VI
AVERAGE F1 RESULTSWITH PLAIN UNIGRAM FEATURES USING 10-FOLD

CROSS-VALIDATION (MEAN ± STD).

Semeval 2007 dataset

Classif er TermWeighting
Binary ITF RF

MNB 53.30 ± 7.05 53.91 ± 5.11 54.52 ± 5.70
ARN-R 44.27 ± 6.82 39.88 ± 5.30 51.53 ± 5.32
LSA 35.74 ± 8.86 36.95 ± 6.28 34.15 ± 6.46
MLR 52.60 ± 7.57 52.86 ± 7.08 52.23 ± 6.25
SVM 53.56 ± 4.89 54.48 ± 7.09 50.80 ± 6.19

Twitter dataset

Classif er TermWeighting
Binary ITF RF

MNB 71.14 ± 1.57 69.44 ± 1.53 70.65 ± 1.79
ARN-R 55.24 ± 2.31 57.80 ± 2.21 65.72 ± 2.38
LSA 53.87 ± 2.67 51.79 ± 2.65 56.87 ± 2.42
MLR 72.17 ± 1.76 71.37 ± 1.55 72.56 ± 1.82
SVM 70.64 ± 1.81 70.02 ± 1.88 69.32 ± 1.96

that for this textual data with a much larger size of features
than examples, it is generally tricky to rely on the cosine
similarityasameasureof relatedness(notethatboththeARN-
R and the LSA methods do it), regardless of the term-feature
spaceof representation(it isespecially adversefor thereduced
spacebasedontheprincipal components that theLSA method
provides). Regarding the group of successful classif ers, it is
tonotethat theyall behavesimilarly.Thismaybeattributedto
overf tting issues, becauseall the classif ers operate on avery
high dimensional space. Hence, they have a large amount of
parameters to f t, which leaves themwith a highly complex
structure that is prone to overf t the data. In this regard, it
is reasonable to wonder if the whole set of features gathered
fromthe literature is appropriate in the setting of this work.
Overf ttingmay bereduced if thenumber of training exam-

ples is roughly proportional to thenumber of features used to
represent the data [31]. In order to evaluate this hypothesis,
only theessential affectiveinformationintext, i.e.,plainwords
modelled as unigrams [43], is considered in Table VI. It can
be observed that the resulting effectiveness rates essentially
remainthesame(forsomeclassif erslikeMNB they increasea
littlewhiledecreasing for others likeMLR andSVM,without
signif cance, p=0.4667). This shows that the classif ers still
overf t the data. Thus, it can be concluded that there is more
than enough affective information in the words alone for the
problemat hand.
Now thesuccessful subset of learningstrategies (i.e.,MNB,

MLR and SVM, along with the TermWeighting methods) is
submittedtospecif c TC FeatureSelectioncriteria(MI,χ2 and
TFS), to see if applying this dimensionality reductionmethod
is of help to overcometheoverf ttingproblem. Theresults are
shown in Figure 4 for the Semeval 2007 data, and in Figure
5 for the Twitter data.
For the Semeval 2007 data shown in Figure 4a, it can be

observed that theMNB behaves similarly to the full weighted
featurespace(averagedamongthefeatureweightingmethods,
F1 = 52.34%) up to a reduction of two orders of magnitude.
Then its effectiveness rates decrease considerably (even for
some conf gurations the precision cannot be computed due
to the lack of predicted labels for the class with the least
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Fig. 4. Effectiveness rates for theSemeval 2007dataset, obtainedby 10-fold
cross-validation, and using Feature Selection methods on unigrams applied
to MNB, MLR and SVM with Binary-weighted features, ITF and RF. MI
stands for Mutual Information, Chi2 stands for χ2 and TFS stands for Term-
Frequency-based Selection.

generality). Thus, MNB just learns enough knowledge from
theoverwhelming feature space to allow pruning it 100 times
without affecting its effectiveness (for the best conf guration,
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Fig. 5. Effectiveness rates for theTwitter corpus, obtained by 10-fold cross-
validation,andusingFeatureSelectionmethodsonunigramsappliedtoMNB,
MLR and SVM with Binary-weighted features, ITF and RF. MI stands for
Mutual Information, Chi2 stands for χ2 andTFSstands for Term-Frequency-
based Selection.

that is RF weights with χ2 selection, F1 = 54.75%).
As it canbeobserved inFigure4b, theoverall behaviour of

the MLR resembles the MNB. Nevertheless, this classif er is

more limitedwith respect to the f nal sizeof the featurespace
as it hardly can work under 100 features. This observation
may ref ect the need of a minimumamount of examples for
a discriminative approach like the MLR, in contrast to the
somewhat more enhanced robustness to a varying amount of
features of agenerativeapproach like theMNB,which is less
affected by this aspect. Moreover, the highest effectiveness
scoresfor theMNB areslightlybetter thanfor theMLR,which
are also observed for the same systemconf guration, i.e., RF
with χ2 (F1 = 52.86%).
Figure 4c shows how the SVM performs very differently

from the previous classif ers. For the SVM, the number of
features affects its effectiveness unpredictably: any system
conf guration change produces a completely different result.
For example, forMNB andMLR, afeaturespacereductionof
an order of magnitude (1000 features) produces all classif ers
to yield a F1 variationwithin 53–55%(2%difference), while
for SVM, it varieswithin49–56%(7%difference, statistically
signif cant, p=0.0044). And this behaviour is observed for the
whole range of reduced features. However, the best conf g-
urations for SVM (F1 = 55.69%) are Binary weights with
MI and χ2 selections, which improve the former results with
MNB by 1%(but non-statistically signif cant, p=0.2446).
Regarding the results for the Twitter data shown in Figure

5, the shape of the curve for the MNB (Figure 5a) and
SVM (Figure 5c) is almost the same. It shows a bump of
improvement around 1000 features for theMNB with binary-
weighted features (F1 = 71.88%) and for the SVM with
RF weights and χ2 (F1 = 71.56%). The difference among
the effectiveness rates for the SVM classif er is signif cant
(p=0.0311) for 1000 relevant features. Regarding the MLR
classif er, there is no improvement in its effectiveness, but
its performance is maintained for 1000 features using RF
with MI and χ2 (F1 = 72.64%). For this classif er, there
is no signif cant difference among the effectiveness rates for
its different conf gurations (p=0.0762). These overall similar
effectiveness trendsvalidate themethodology proposed in this
work for a different environment withmore available data.
2) Train-testevaluation: Theeffectivenessof theclassif ers

with the whole set of features is shown in Table VII. It
can be observed that again most of themyield similar rates,
which may indicate overf tting problems, and none of them
improves the best F1 result published in the state of the art
for sentiment classif cation with the Semeval 2007 corpus,
which is set at 42.43%with a Naive Bayes classif er [22].
Exceptionally, the MLR could not predict the class with the
least generality, whichdenotes the requirement of aminimum
amount of examples for this classif er.
In contrast, the reduced featuresettingwithunigramsalone

(see Table VIII) enables the classif ers to perform better,
and this reveals the two groups of classif ers (the successful
ones and theothers) already observedwith thewholedataset.
Note that all the successful classif ers improve the baseline
effectiveness rate at least by 2%, and they again appear to
be the MNB, MLR and SVM. Specif cally, the MNB with
binary-weighted unigrams and the MLR with RF yield the
best improvement margin with respect to the state of the art,
which is of 7%.
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TABLE VII
F1 RESULTSWITH THE WHOLE SET OF FEATURES USING TRAIN-TEST

VALIDATION. N/A STANDS FOR NOT AVAILABLE DUE TO NOT PREDICTING
THE CLASSWITH THE LEAST GENERALITY.

Classif er TermWeighting
Binary ITF RF

MNB 40.26 42.20 N/A
ARN-R 37.38 33.40 39.36
LSA 33.44 34.81 30.26
MLR N/A N/A N/A
SVM 39.27 37.76 38.94

TABLE VIII
F1 RESULTSWITH PLAIN UNIGRAM FEATURES USING TRAIN-TEST

VALIDATION. N/A STANDS FOR NOT AVAILABLE DUE TO NOT PREDICTING
THE CLASSWITH THE LEAST GENERALITY.

Classif er TermWeighting
Binary ITF RF

MNB 48.89 45.41 N/A
ARN-R 37.26 32.32 42.25
LSA 37.71 37.63 31.96
MLR N/A N/A 49.26
SVM 45.30 36.83 N/A

Next, the feature selection criteria are applied to the
unigram-weighted space in order to improve the former ef-
fectiveness rates (see Figure 6). At f rst sight, note that only
the MNB delivers some sort of trend while MLR and SVM
behave unpredictably according to the number of selected
features. This could be attributed to the simplicity of this
successful generativeapproachincontrast to thecomplexityof
theothers. However, all theexperiments coincidewith having
amaximumeffectiveness rate of 50%when dealing with 50
features, and regardless of the feature selectionmethod. This
fact isobservedfor theMNBwithRF,MLRwithRF andSVM
Binary weights. In the end, all these three methods improve
thebaselineF1 rate in thestateof theart (42.43%) by almost
8%.
In summary, the most effective procedure to adapt the

conventional SA methods to the TTS requirements is to
consider plain unigrams alonewith asuccessful classif er like
MNB, MLR or SVM. What is more, considering appropriate
featureweightingandselectionprocedures, not only improves
the effectiveness of the system a little, but also enhances
its computational performance as it processes fewer feature
dimensions.

V. CONCLUSIONS
The identif cation of affect in text is a complex problem

that hasmany facets to consider. In this work, we performed
an exhaustive and comprehensive study to tackle a particular
three-class sentiment analysis problem, at the sentence level,
framedbyaTTSscenarioandwithoutusingadditional textual
data. As far asweknow, thiswork is oneof the f rst attempts
to adapt conventional SA methods to the TTS requirements.
Our experiments indicate that under such problem settings,
the success of agood classif er such asMNB, MLR or SVM,
greatly depends on the representation of the features, which
helps the classif er to not overf t the data.
This work shows how considering the most relevant un-

igrams alone (with adequate weighting methods) results in
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Fig.6. Effectivenessratesfor theSemeval 2007dataset,obtainedby train-test
validation,andusingFeatureSelectionmethodsonunigramsappliedtoMNB,
MLR and SVM with Binary-weighted features, ITF and RF. MI stands for
Mutual Information, Chi2 stands for χ2 andTFSstands for Term-Frequency-
based Selection.

better classif cation effectiveness compared to using addi-
tional features such as bigrams, POS tags, stems, synonyms,
emotional dimensions and negations. We have evaluated our
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experiments with two corpora analysed with sentiment at the
sentence level, but with differing amounts of available data
and number of categories (evenly and unevenly distributed
in the corpora). Although the results obtained display similar
effectiveness trends for the various conf gurations, different
effectiveness levels are observed according to the number of
addressed categories and the amount of available data. For
the particular problem tackled in this work, the successful
classif cation strategies yield a similar F1 effectiveness rate
of 56%with the Semeval 2007 dataset, and 73%with the
Twitter data. Finally, it is worth noting that setting the same
evaluation conditions as the SA task for the Semeval 2007,
the application of the sentiment analysis procedure proposed
in this work improves the reported maximum effectiveness
rates by 8%.
In our future work we will carefully study increasing the

size of the training data regarding its computational perfor-
mance, as it seems to smooth the effectiveness rate in SA.
What is more, we plan to evaluate our results with a TTS
system,withother languagesandconsider atemporal analysis
for the evolution of a conversation.
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