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Abstract

This tutorial presents a practical application of adaptive filtering
to cancel noise.

1 Introduction

Noise cancellation is a classical example of the practical application of adap-
tive filtering. It applies signal processing techniques to remove (or at least
minimise) the disturbing effect of a noise polluting a signal of interest.

In order to apply the noise cancellation procedure it is required to have
some knowledge about the relation among the signals involved. In this
work, an isolated measure of the interfering noise is available, taken in a
place different from where the signal of interest (plus modified interfering
noise) is taken, see Figure 1.

As it can be observed in the figure, two signals are involved in the process:
x[n] represents the signal of interest in addition to a modified version of the
interfering noise, and the pure interfering noise itself s[n]. The interfering
noise variation (s'(t) wrt s(t)) is caused by the spatial difference between
the places where the signals are taken, as it is proposed in this scenario.
The system S represents the acoustic transfer function between these two
measure points.
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Figure 1: Noise cancellation diagram.

2 Adaptive filter

In order to perform the successful removal of interfering noise from the
“polluted” signal of interest x[n], the filter h[n] needs to be dynamically
adapted in order to filter out the noise. h[n] may well be an N-point Finite
Impulse Response (FIR) filter with real values, given the real nature of audio
signals.

Overall, the adaptive filter h[n] identifies the system S. Therefore, by
estimating the modified interfering noise p[n| ~ s'[n], the error signal e[n] =
v[n]+s'[n]—p[n] is minimised, leaving v[n], i.e., the signal of interest without
noise interference.

3 Objective function

The correct statement of an adaptive procedure first defines an objective
function, aka cost function or error function, to optimise under a certain
criterion. Such cost function J, is determined to be the (e.g.) energy of the
error signal e[n| = x[n] — p[n] (over a span of M points), see Eq.(1).
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Therefore, the optimisation criterion is the minimisation of the squared



error defined by such objective function J.. Since the square function J. is
a well-defined convex function, some extremum is determined to exist.

4 Gradient descent procedure

The gradient descent (GD) is an iterative procedure to minimise the criterion
function J,, thus defining a minimum squared-error procedure. Overall, it is
an adaptive method to implement Wiener’s filter (i.e., the optimum filter),
which determines h[n] to be a solution vector that minimises J.. Note that
Je is a function of h[n], given that the predicted noise is p[n| = s[n| * hin].
For practical purposes, p[n] is implemented as the scalar product h”'s.

The gist of this procedure is that the adaptation is performed in the
direction of the inverse gradient of the objective function as the procedure
iterates over the data, see Eq.(2).
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Note that Eq.(2) introduces the n[n] parameter, called the learning rate,
which states how fast the algorithm converges to the optimum solution.
If nn] is too small, convergence is needlessly slow, whereas if it is too
large, the adaptation process will overshoot and may diverge. Refer to
[Duda et al., 2000] for further details.

4.1 Widrow-Hoff or Least Mean Square (LMS) rule

This is a particular GD procedure that reduces the storage requirements of
the iterative method by considering the samples sequentially. This implies
that the analysis window of the error is reduced from M samples to 1 sample.
Therefore, it is a sample-by-sample approximation of the error estimate. Its
online parameter update rule is given in Eq.(3).
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where n[n] absorbs the 2 constant of the gradient.

Considering one sample at a time, the adaptation never ceases: the filter
parameters orbit around the optimum when the noise s[n| remains station-
ary. If the statistical properties of s[n] changed with time, the adaptive filter
h[n] would be able to evolve and readapt to the new scenario.



5 Training inhibition

The presented noise cancellation technique displays a problem when the
signal of interest v[n| is present, because then the error should maintain
such signal (e[n] ~ v[n]) instead of readapting the coefficients trying to
force its minimum with a signal that is totally unrelated, i.e., the pure
noise reference s[n]. Therefore, a method to inhibit the adaptation of the
coeflicients is needed.

One way to determine when to inhibit the adaptation could be controlling
that the energy of x[n| remains lower that a fraction of the energy of s[n].
Therefore, if the signal of interest v[n] is predominant in z[n], then the filter
should not continue readapting.

Another way to proceed could be applying a variable learning rate (note
that n[n] allows the evolution with time) as is shown in Eq.(4).
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where &5 and &, are online estimations of the energy of the pure noise and
error signals, respectively.

Hence, when the signal of interest v[n] is present, the energy of the error
signal &, is bound to grow, thus shrinking the learning rate n[n], causing
the adaptation temporally to cease.
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