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Abstract

This paper describes the development of a counter-
factual Root Cause Analysis diagnosis approach
for an industrial multivariate time series environ-
ment. It drives the attention toward the Point of
Incipient Failure, which is the moment in time
when the anomalous behavior is first observed, and
where the root cause is assumed to be found before
the issue propagates. The paper presents the ele-
mentary but essential concepts of the solution and
illustrates them experimentally on a simulated set-
ting. Finally, it discusses avenues of improvement
for the maturity of the causal technology to meet
the robustness challenges of increasingly complex
environments in the industry.

1 INTRODUCTION

The degradation of complex industrial assets is a multi-
faceted problem that can be explained by different factors.
For instance, in the Reliability Engineering field, assets are
most expected to fail either prematurely (early) during their
break-in period, or late by the end of their remaining use-
ful life (wear-out) [Dersin, P., 2023]]. These failure types
can be anticipated because their modes and mechanisms
are well known. Moreover, their impact can be mitigated
by introducing quality checks in the manufacturing process
and inspection actions in their (more-or-less conservative)
preventive maintenance schedule. However, for as long as
the machines operate, failures can randomly appear at any
point in time. This is especially challenging for dependable
assets while they transit the middle region, when the failure
rate is relatively low, but uniform/constant.

In this uncertain setting, the field of Predictive Maintenance
tackles the problem by introducing the data as a means
to closely follow the actual degradation of each asset and
make better informed and timely decisions [Fink, O., Wang|
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Q., Svensén, M., Dersin, P., Lee, W.-J., and Ducofte, M.,
2020]. In this sense, the detection of anomalous behaviors
and the capacity to diagnose their root causes become in-
creasingly important to guarantee the availability of the
machines. Since these failures appear abruptly, they cannot
be anticipated, and their evolution is not smooth as they
undergo various stages of severe degradation. What is more,
the available operational-service data always comes from
the field, and thus it is regarded as observational time series
data, where the value of the variables is always determined
by their causes, not through experimentation.

The literature on causal approaches for identifying the root
causes dealing with such type of data typically assume that
the influences between observed processes change smoothly
over time, which is introduced as a general confounding
variable [Huang, B., Zhang, K., and Scholkopf, B., [2015],
and modeled probabilistically to logically reason on the
likelihood of an event within a certain interval [[Van Houdt.
G., Depaire, B., and Martin, N.,|2022]]. The most common
approach, though, is to frame the problem around the topic
of anomaly detection by modeling the normal operational
regime. Specifically,|Assaad, C. K., Ez-zejjari, I., and Zan!
L .|[2023]] develop a summary graph and apply a decomposi-
tion into abstract causal relations, Budhathoki, K., Minorics.
L., Blobaum, P., and Janzing, D.| [2022] assess the con-
tribution of each variable to the target outlier score using
counterfactuals, Strelnikoff, S., Jammalamadaka, A., and
Lu, T.-C.[2023]] develop a flexible neural graph for edge
attribution, |Yang, W., Zhang, K., and Hoi, S. C.H./[2023]]
focus on abnormal data points that do not follow the regular
data-generating process, and for Han, X., Zhang, L., Wu!
Y., and Yuan, S.|[2023]], anomalies are caused by external
interventions on the normal causal mechanism and therefore
find the algorithmic recourse via counterfactuals to revert
them.

This workshop paper exploits the fact that root causes can
be found directly from the causal graph and from the time of
appearance of anomalies [Assaad, C. K., Ez-zejjari, 1., and
Zan, L., |2023]]. We follow previous works on developing a
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complete causal approach, from the structured model build-
ing stage to its exploitation through probabilistic counter-
factual analysis, considering the idiosyncrasies of industrial
multivariate time series environments, and addressing the
research gap to learn the system condition transition instead
of detecting anomalies. The paper is organized as follows:
Section 2| reviews the fundamentals of Root Cause Analy-
sis and Causal Inference, Section [3]describes the proposed
causal diagnosis method from the standpoint of Predictive
Maintenance, Section[d]illustrates the implementation of the
method on a synthetic system, SectionE]discusses avenues
of improvement to increase the robustness of the approach,
and Section [6] concludes the work.

2 BACKGROUND

2.1 ROOT CAUSE ANALYSIS

Root Cause Analysis (RCA) is a troubleshooting method
of problem solving used for identifying the root causes of
faults or failures [Wilson, P. F., Dell, L. D., and Anderson/
G. F.,|1993]]. RCA is a form of deductive inference since it
requires an understanding of the underlying causal mech-
anisms for the potential root causes and the problem, i.e.,
what is typically found in the context of Predictive Mainte-
nance. RCA can be decomposed into four steps:

1. Identify and describe the problem clearly.

2. Establish a timeline from the normal situation until the
failure finally occurs, through the Point of Incipient
Failure.

3. Distinguish between the root cause and other causal
factors.

4. Establish a causal graph between the root cause and
the observed problem.

The trigger signal of the RCA is given by the failure times-
tamp (i.e., the point in time when the failure variable is
observed). Then, RCA yields a list of potential root cause
variables along with their probabilities, which aligns with
the way complex systems fail [Cook, R. L., 2000]. The vari-
ables that comprise the data are required to be representative
enough to help the developers and engineers pinpoint the
source of the observed problems through the root causes
and their effects [Weidl, G., Madsen, A. L., and Dahlquist!
E.| 2008].

2.2 STRUCTURAL CAUSAL MODEL

The causal links among the variables X that build the model
of a system are assumed to be most effectively represented
using the tools from the field of Causality. In this sense, the
Structural Causal Model (SCM) is the framework that can
most generally capture such directed associations [Pearl, J.,

2019]]. The SCM defines a set of assignments governing
their specific functional associations f, along with some
independent noise N that accounts for everything that is not
explicitly included in the model:

Xj = fj(PA;,Nj), (1)

where P A; represents the direct causes of the X; variable.

If enough knowledge and experience from the field is avail-
able from the subject matter experts, i.e., strictly complying
with the RCA requirements, then a complete SCM may be
developed right from the start. However, this is not the typ-
ical use-case scenario in complex industrial settings, and
data generally needs to be carefully leveraged to drive the
development of the causal model.

2.2.1 Causal Discovery

Whenever the structure of the model is to be inferred from
the observed variables, i.e., the Causal Discovery task, as-
sumptions need to be made about the data generating pro-
cess, constraints need to be applied, and usually the statis-
tical methods of the algorithms yield different graphs that
explain the same factual data [Glymour, C., Zhang, K., and
Spirtes, P, 2019].

In a multivariate environment, the most straightforward ap-
proach is led by the so-called “constraint-based” discovery
methods. These traditional approaches iteratively build the
causal graph by utilizing a score such as the p-value of
conditional independence tests. As a general technique, the
Peter-Clark (PC) algorithm is described [Spirtes, P., Gly{
mour, C., and Scheines, R., 2001]]. PC is a causal network
structure learning algorithm that copes well with high di-
mensionality and can often also identify the direction of
contemporaneous links [Runge, J., Bathiany, S., Bollt, E. et
al.l [2019]. It is consistent under i.i.d. sampling assuming
no latent confounders, i.e., all relevant variables need to
be observed in the data. Its outcome is a Markov Equiva-
lence Class, and thus it is likely to have different graphical
representations that explain the same observed data. The
PC algorithm is especially suited to discover causality in
combination with the Fisher-Z independence test because it
requires less constraints for the input data [Kobayashi, S.
Otomo, K., Fukuda, K., and Esaki, H., 2017].

2.2.2 Causal Bayesian Network

Once the structural graph that binds the variables is de-
termined, the functional associations of the SCM may be
learned, and this work adopts a stochastic interpretation of
the world. Therefore, it treats all X as random variables, and
the resulting SCM statistically describes their (conditional)
probability distributions.



Considering n random variables X7, X5, ..., X, and a di-
rected acyclic graph that relates them causally, a Causal
Bayesian Network (CBN) is a generative model that has the
following factorized joint probability distribution:

P(X) = P(Xla---aXn) = HP(X”PAJ‘,NJ') . (2)
j=1

The graphical nature of Bayesian networks allows seeing
relationships among different variables, and their condi-
tional dependencies enable performing probabilistic infer-
ence [[Alaeddini, A., and Dogan, I.|[2011]. Specifically, CBN
are powerful tools for knowledge representation and infer-
ence under uncertainty [Pourret, O.,[2008]].

2.3 CAUSAL INFERENCE

Beyond probabilistic inference, Causal Inference provides
the tools that allow estimating causal conclusions even in
the absence of a true experiment, given that certain assump-
tions are fulfilled. These assumptions increase in strength
as is defined in Pearl’s Causal Hierarchy (PCH) abstrac-
tion [Bareinboim, E., Correa, J. D., Ibeling, D., and Icard.
T.}2022]], which is summarized as follows.

2.3.1 PCH Rung 1: Associational

Describes the observational distribution of the factual data
through their joint probability function P(X). From this
point forward, interesting quantities, i.e., the queries Xg,
can be directly computed given some evidence X g, through
their conditional probability:

P(Xq, Xr)

3
P(XE) ©

P(XolXE) =

This level of analysis displays a degree sophistication akin
to classical (un)supervised Machine Learning techniques.
As such, it is subject to confounding bias.

2.3.2 PCH Rung 2: Interventional

Describes an actionable distribution, which endows causal
information at the population level. This level of analysis
can be achieved through actual experimentation via Ran-
domized Control Trials, or through statistical adjustments
that smartly combine observed conditional probabilities to
reduce spurious associations in the estimation. Pearl’s do-
calculus is likely to be the most effective approach to de-
termine the identifiability of causal effects by applying the
following three rules: 1) insertion/deletion of observations,
2) action/observation exchange, and 3) insertion/deletion of
actions [Pearl, J.,[2012]).

2.3.3 PCH Rung 3: Counterfactual

Describes a potential distribution at the individual level
driven by hypothetical speculations over data that may con-
tradict the facts. Conducting this estimation requires the
following three steps [Pearl, J., Glymour, M., and Jewell, N|
P 2016]:

1. Abduction: Beliefs about the world are initially up-
dated by taking into account all the evidence E given in
the context. Formally, the exogenous noise probability
distributions P(U) are updated to P(U|E).

2. Action: Interventions are then conducted to reflect the
counterfactual assumptions, and a new causal model is
thus created.

3. Prediction: Finally, counterfactual reasoning occurs
over the new model using the updated knowledge.

3 METHOD

Since the applied industrial environment belongs to the
area of Predictive Maintenance, the observation of a com-
mon development standard such as the ISO 13374 is rec-
ommended [[SO, [2003]]. This specification breaks down the
complexity of a problem into small modules that may be de-
veloped in isolation, thus increasing the chances of project
success while improving the interpretability and explain-
ability of the technical solution, and also help to reduce the
technical debt. This section describes the Data Manipula-
tion, State Detection, and Health Assessment processing
blocks.

3.1 DATA MANIPULATION

Causality is an emergent property of complex industrial
systems [Yuan, B., Zhang, J., ef al., 2024]. In this setting,
event variables constitute high level, nominal, time-stamped,
qualitative data records that group functions into categories
and hierarchies. In fact, the causal relation is a relation
among events (not properties or states) [Bunge, M., 2009].
To preprocess these collected event logs [[Van Houdt, G.|
Depaire, B., and Martin, N., 2022], a message template
extractor is typically used [[Chuah, E., Kuo, S.-h., ef al.|
2010].

3.1.1 Event Transformation

To progress with their analysis, the event variables need to
be standardized into a time-series format through a trans-
formation [Hu, X., Eklund, N., and Goebel, K., 2007]. A
common approach is to utilize a counting function, which
adds up the number of logged messages within a given time-
slot, therefore yielding an integer-valued representation for
all the variables. Other details such as the sampling rate



need to match the speed of change of the variables. Finally,
the data need to be windowed on the (recent) past of the ob-
served failure, considering a limited history in time, which
needs to be sufficient to observe the evolution of the health
condition of the system (from normal to failure). Once the
failure has occurred, the state of the system is assumed to
change as operators may take actions to mitigate its impact
and prevent further damage [Li, M., Li, Z., Yin, K., Nie, X.]
Zhang, W., Sui, K., Pei, D.|[2022].

3.1.2 Relevance Filter

Since the event-variable space may be large at this stage, it
is advised to reduce it by filtering the relevant variables only.
In this sense, the proposed data strategy consists of first
using a robust measure of Mutual Information between any
two variables [Reshef, Y. A., Reshef, D. N., Finucane, H. K.
Sabeti, P. C., and Mitzenmacher, M.} [2016], then discarding
the non-significant variable relationships via independence
testing, and finally ranking the remaining variables. At last,
it is also advised to remove periodic events such as timers
that are unrelated to troubleshooting, e.g., using Fourier anal-
ysis and regressions [Kobayashi, S., Otomo, K., Fukuda, K.
and Esaki, H., 2017]]. As a result, a collection of signifi-
cant integer-valued time series variables representing the
evolution of event counts is obtained.

3.2 STATE DETECTION

This module builds the data-driven SCM and conducts a
coarse-grained diagnosis by determining if the asset under
test shows a normal or abnormal working condition. How-
ever, if the resolution is not adequate in the sampled data, the
causal precedence may not be observed, leading to cycles
and unobserved confounding. Therefore, what makes this
approach especially suited for dynamic data is the explicit
consideration of time in the causal model, which is espe-
cially required to break cycles and resolve race conditions.

3.2.1 Structure Learning

The proposed approach initially infers the causal relations
from observational time series event data. Nevertheless, no
family or method for causal discovery in time series stands
out in all situations with different characteristics |Assaad,
C. K., Devijver, E., and Gaussier, E., [2022]].

An initial baseline is obtained with the PC algorithm (using
the Fisher-Z independence test) on data augmented with
time lags. The count-based transformation described in Sec-
tion naturally lends itself to the application of this
technique as long as the counts approximate a Gaussian
distribution, which can be asserted using the Lilliefors nor-
mality test [Lilliefors, H. W.,|1967].

However, the direct application of PC discovery may not
be advised for certain time series cases, and other more
involved methods using more powerful statistical tests (also
with time lags) should be explored on top of it. In con-
sequence, the Momentary Conditional Independence (PC-
MCI) test is considered [Runge, J., Nowack, P., Kretschmer,
M., Flaxman, S., and Sejdinovic, D., 2019], which has a
stronger causal detection ability based on partial correlation
tests.

3.2.2 Dynamic Networks

What follows is the construction of the probabilistic model
from the learned time-dependent causal structure. This ap-
proach is agnostic to any specific (non/linear) parametric
functional relationship, and also provides natural access
to its inherent uncertainty (even at the individual instance
level).

In this sense, the Dynamic CBN (DCBN) yield a factor-
ized representation of a stochastic process. They extend the
standard causal Bayesian network formalism by providing
explicit discrete temporal dimensions. DCBN represent a
probability distribution over the possible histories of a time-
invariant process; their advantage with respect to classical
probabilistic temporal models like a Markov chain is that
a DCBN is a stochastic transition model factored over a
number of random variables, over which a set of conditional
dependency assumptions is defined [Bobbio, A., Codetta{
Raiter1, D., Montani, S., and Portinale, L., [2008]].

Considering n time-dependent discrete random variables
Xt X4, ..., X!, aDCBN is essentially their replication over
time slices t — A (creating the so-called discretization steps),
with the addition of a set of arcs in the graph representing
the transition model, which is defined through the distri-
bution P(X! |X;*A), for all time-related variables ¢ and j.
Arcs connecting nodes at different time-slices (A > 0) are
called interslice edges, while arcs connecting nodes at the
same slice (A = 0) are called intraslice edges. The joint
probability distribution of the DCBN is shown as follows:

P(X) =[] P (XI2PA2) . 4)
Vi

3.2.3 Failure Prediction

The learned DCBN shall be used to estimate the probabil-
ity of the Failure variable X r in time Pr(t), which is the
sink node in the model that represents the eventual system
crash, given the observed data (i.e., the root causes and their
effects):

Pp(t) = P(Xp|PAR) . (5)

Ideally, the probability of observing a high count of fail-
ure events X & = H should be a monotonically increasing
function (in time) until the moment of system failure.



To detect if an anomaly is present, the Point of Incipient
Failure 7" should be determined. This is the moment in time
when the system starts developing an abnormal behavior
that will eventually lead to the crash. Also, this is where the
root cause of the observed anomaly is reasonably expected
to be found. A possible strategy to determine this instant
can be defined by the minimum-time significant-second-
derivative of the probability of Failure, as this is the first
inflection point with a minimally relevant increase © of risk
(it may not be the greatest absolute increase, but it shall be
one with the precedence in time):

02
T = mtin <8t2PF(t) > @> . (6)

While there may be many different ways to express this cri-
terion, by using a © threshold parameter the subject matter
experts can be easily involved in the design of the solution.

3.3 HEALTH ASSESSMENT

This module exploits the probabilistic SCM and conducts a
fine-grained diagnosis by determining the root cause of the
observed anomaly.

3.3.1 Path Finding

The hypothesis of isolation is a methodological requirement
of the sciences for research; hence, the useful fiction of the
isolated “causal chain” or “singled-out path” in the structure
will work to the extent to which such an isolation takes place,
and this is often the case in definite respects during limited
intervals of time. Moreover, since every isolable process is
causal, anomalies can emerge solely as a result of external
perturbations [Bunge, M., 2009].

Concerning the analysis of a DCBN for RCA, estimating
the most likely time-sequence chain of variables for the ob-
served anomaly event adds explanatory value in an industrial
environment. In the DCBN, each node represents an event
count or state change of a variable, and the arcs represent
causal-temporal relationships between the nodes. In this
setting, probabilistic temporal logic determines that causes
and effects are steady state formulas, the properties of which
hold for the system at a certain point in time [[Van Houdt, G.]
Depaire, B., and Martin, N.||[2022]], and this allows for each
formula to be a path formula too where multiple variables
are involved. Therefore, the causal paths shall be given by
the structure of the graph: a search algorithm shall be used
to traverse it and find all the routes .S from the different root
nodes to the sink Failure node.

For the Point of Incipient Failure T, the most likely causal
path S* that explains the anomaly data can be determined
after the exhaustive search among all the potential paths S
and their respective probabilities:

S* =max P(s|s); t=T, (7
ses
where s represents a structural path from a source node to
the sink node (i.e., the failure event variable).

Conditioning on the variables not in the path under anal-
ysis (8) is important to block spurious associations. This
is especially relevant in the case of descendants, because
in the event of an anomaly, the parent/ancestor variables
are preferred as precedents [Li, M., Li, Z., Yin, K., Nie, X..
Zhang, W., Sui, K., Pei, D.| 2022].

Finally, in addition to putting the focus on the most expected
behavior, one could argue that the root cause may also have
occurred in the most unexpected/irregular setting [[Yang|
W., Zhang, K., and Hoi, S. C.H.,|2023]], assuming that the
most commonly experienced issues will have already been
solved. This alternative perspective may also be covered in
the proposed approach by minimizing the path likelihood
probability.

3.3.2 Algorithmic Recourse

So far, the main focus of the analysis has been on the ob-
served factual data. However, these data represent only
one of the many potential outcomes the system could have
experienced: had things been different, an alternative out-
come may have been observed. Algorithmic Recourse ex-
plores these counterfactual worlds [Karimi, A.-H., Barthe]
G., Scholkopf, B., and Valera, 1., |2022]. Such environments
are simulated via inference through (atomic) interventions «
in time on a specific abnormal instance in order to revert the
anomaly [Han, X., Zhang, L., Wu, Y., and Yuan, S.[|2023],
i.e., to lower the risk of failure X . This is expected to help
in the recognition and understanding of the general root
causes that lead to the system failure [Li, M., Li, Z., Yin, K.]
Nie, X., Zhang, W., Sui, K., Pei, D.| [2022].

Formally, the specific retrospective reasoning that these
counterfactuals explore on the anomaly, i.e., the Point of
Incipient Failure at t = T, can be stated as:

P(XET = L|do(X'=T = ), X=T  XIZT = H) . (8)

Given that an anomaly was factually recorded in the data,
i.e., through observing a high risk of failure X7 = H,
i.e., a high count of failure events, Equation (@) estimates
the probability that the risk would have been low at the Point
of Incipient Failure X7 = L, had the root cause X =7
had the value «, instead of the value it actually had when
the anomaly was triggered. Note that this formula does not
involve regular probabilistic conditioning, but the applica-
tion of the Abduction-Action-Prediction process described

in Section 2.3.3



4 RESULTS

This section elaborates on the experimental work. For fur-
ther details, the code along with the description of the re-
quired software tools is available hereﬂ

4.1 SYSTEM DATA DESCRIPTION

For illustrative purposes, the system considered in this work
is synthetic. It is comprised of 4 integer-valued time-series
variables that could describe a 2-out-of-3 redundant system
as follows: three full-duplex data channels that exchange
messages among the devices X, and three simplex alarm
channels from X to Y, which checks that the system is in
good working condition, see Figure [T}

0f0R0
)

Figure 1: Time-implicit summary graph for a synthetic sys-
tem that could describe a 2-out-of-3 redundancy. Note the
time-confounded associations among the X channels.

The variables represent the counts of event messages over
time. The window of analysis frames the timeline evolution
of the system condition, from a normal operation to the
crash, through the Point of Incipient Failure, where the root
cause is likely to be found, see Figure 2] for a specific exam-
ple of an anomaly on Channel 1. The failure is simulated as
an injection of exogenous noise into one device X, which
then propagates to the rest of the devices. This simplified
environment should account for all of the data collection
and manipulation steps.

4.2 CAUSAL MODEL LEARNING

The structure of the model is learned with time-dependent
discovery algorithms to deal with the implicit confounding
issue. Figure 3| shows the ground truth of the time-explicit
graph of the system under analysis. In this structure, the
lagged terms correspond to the channel data, and the con-
temporaneous terms correspond to the alarm signal.

To statistically train the causal model, a dataset of 100 in-
stances is generated, barely over the required minimum
amount of failure examples for the three potential root cause
variables [Lejeune, M.| [2010]]. Table |l| charts the causal
discovery performance of PC (stable version, manually aug-
mented with time lags) and PC-MCI algorithms over differ-

!Code repository: https://github.com/atrilla/ci4ts
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Figure 2: Timeline of system condition evolution showing a
failure on Channel 1.
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Figure 3: Time-explicit ground truth graph.

ent p-value configurations, using the Structural Hamming
Distance, which compares the resulting graphs by comput-
ing the difference between their (binary) adjacency matrices.
According to these results, the simplicity of the PC algo-
rithm augmented with manual time lags like a buffer, which
is a necessary step to fairly compare the results (PC-MCI
automatically implements this), seems to be more effective
to discover the structure that binds the variables of the syn-
thetic system (all results seemed reasonable, e.g., there were
no oddities such as empty graphs).

This performance analysis on learning the structural infor-
mation has been conducted for research informative pur-

Table 1: Performance of causal discovery algorithms
through the Structural Hamming Distance (SHD).

Algorithm (p-value) SHD

PC-MCI (0.01) 20
PC-MCI (0.03) 20
PC-MCI (0.05) 21

PC-stable (0.01) 9
PC-stable (0.03) 9
PC-stable (0.05) 10




Table 2: Likelihood-ranked paths that explain the observed
anomaly right after the Point of Incipient Failure t = T+.

Causal Path  Likelihood
Xt XYt 0.0505
Xt XYt 0.0293
X2 = Xt =Yt 0.0208
X2 5 x5yt 00124
Xt XE =Yt 0.0080
Xt XYt 0.0076

poses only. The ground truth graph is used from this point
forward to train the probability distributions of the DCBN
model. The performance of this predictive model is eval-
uated using the root mean square error metric compared
with the alarm variable, and it yields a score of 0.1247. In
the illustrative timeline example shown in Figure 2] the
predicted alarm is almost indistinguishable from the actual
alarm signal.

4.3 CAUSAL DIAGNOSIS

Having a model that is able to accurately predict the ob-
served alarm level, and therefore, the anomaly at the Point
of Incipient Failure T before the issue propagates, Table 2]
shows the list of paths that traverse its graph from a source
(channel) node to the sink (alarm) node, ranked by their
likelihood scores. Note how the most likely path explains
the observed anomaly at ¢ = 7'+, immediately after the
incipient failure has occurred on Channel 1 (this diagno-
sis is necessarily reactive since by definition it cannot be
anticipated).

Finally, to further assert the blame for the root
cause, the following counterfactual is evaluated
P(Y=THdo(XIZTH), XI=T+ yt=T+),  The result-
ing estimand shall adjust for the anticausal backdoor path
introduced by the X;fl confounder. Figure (4| shows the
results for a range of potential alarm outcomes through their
distributions. Note how the alarm level would have stayed
low had the root cause X} kept the values it had before
the Point of Incipient Failure. Also note how the region
around those values is the one that displays the least amount
of uncertainty. In retrospect, the diagram also shows how
this one single variable, i.e. the root cause, was sufficient
to cause the anomaly that would end up with the system
failure.

S DISCUSSION

Up to this point, the solution presented in this workshop
paper has described the basic principles of its causal RCA
technology and an initial experimental proof of concept has

o
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0 —— Counterfactual Alarm (U £ 0): Y«(t=T+)
Factual Root Cause value: X;(t=T+)
Factual Root Cause value: X;(t<T)

6 1‘0 2‘0 3b 4‘0 Sb
Counterfactual Root Cause: X (t=T+)
Figure 4: Distributions of potential alarm outcomes for a
range of counterfactuals on the root cause channel. The de-

scriptive averages in terms of means and standard deviations
for the (discrete) failure random variable are shown.

been shown. This early stage of maturity corresponds to
a standard ISO 16290 Technology Readiness Level (TRL)
of 3 [ISO, 2013]. This section brainstorms some avenues
of improvement to increase this robustness indicator up to
higher quality standards, considering the specific challenges
of complex industrial environments, especially towards pin-
pointing the incipient failure, which is where the root cause
is most likely to be found.

5.1 VALIDATE THE TECHNOLOGY IN A
RELEVANT ENVIRONMENT (TRL 4-5)

One first idea could be to improve the learning of the struc-
ture of the model. In line with similar constraint-based ap-
proaches, the consideration of tiers that heuristically strat-
ify groups of variables can be advantageous [[Andrews, B.
Spirtes, P., and Cooper, G. F.[2020]. Alternatively, score-
based approaches, where multiple candidate models are fit
and checked, can also be explored [|Glymour, C., Zhang]
K., and Spirtes, P.,[2019]]. Finally, the usage of reductionist
Functional Causal Models (FCM) may be especially help-
ful. A FCM represents a pairwise (or bivariate) interaction
of the effect as an analytic function of a direct cause and
some unmeasurable noise. Several forms of the FCM have
been shown to be able to produce unique causal directions
and have received practical applications [Huang, B., Zhang!
K., and Scholkopf, B., 2015]. In specific scenarios such as
multivariate time series, FCM can even improve the perfor-
mance of traditional constraint-based approaches [Runge, J.]
Bathiany, S., Bollt, E. er al}2019]. Additionally, different
independence tests can be introduced in the FCM-based
discovery process to tackle heterogeneous data settings.

Second, in industrial settings where only the crash event
at the end of the timeline is available (instead of an evolv-
ing alarm signal), a different approach shall be adopted. If



a similar solution based on regression is still pursued, a
transform based on artificially prepending the failure with
a “rise-time” pattern driven by prior experience could be
introduced [Hu, X., Eklund, N., and Goebel, K., 2007]. Al-
ternatively, a classification approach based on logistic re-
gression could be adopted by treating the single crash event
as a binary target variable, but data imbalance may be a con-
cern. Finally, the kink discontinuity at the Point of Incipient
Failure or the sharp discontinuity at the Failure could be
exploited with a regression-based difference-in-differences
technique [Abadie, A.}2005]], provided that data are avail-
able after the critical event, which may not always be the
case.

Finally, assessing the capacity to scale of the described
solution is necessary. This goal should consider the impact
of the number of variables, the length of the records, the
nature of data, etc.

5.2 DEMONSTRATE THE TECHNOLOGY IN AN
OPERATIONAL ENVIRONMENT (TRL 6-7)

The next enhancement idea has to do with the processing
of real-world data, and while they may come from the lab
(perhaps also using an accelerated degradation testing pro-
cedure), what is actually required are data from the field.
However, operational data often suffer from imbalance is-
sues, especially showing a shortage of failure instances. In
this case, probably the most sensible way forward is to
adopt causal approaches that initially tackle the detection
of anomalies, in line with the standard pipeline of Predic-
tive Maintenance, including point, contextual, and collective
irregularities. Causality-based anomaly detection methods
provide at least two significant theoretical benefits over
purely statistical methods: 1) improved robustness to non-
anomalous out-of-distribution data, which implies a reduc-
tion in false-alarms, and 2) a potential for failure localization
due to the topological ordering of the causal graph [Strel{
nikoff, S., Jammalamadaka, A., and Lu, T.-C., 2023]].

What is potentially weak in the current state of the art in
causal RCA is the specific assessment of heteroskedasticity.
The causal relationships are stationary unless an anomaly oc-
curs [Yang, W., Zhang, K., and Hoi, S. C.H.| [2023]]. Anoma-
lous data are non-stationary, and this violates one of the
fundamental assumptions of time series models. Therefore,
a stronger emphasis on preprocessing transformations may
be necessary. Additionally, the case of time-varying expo-
sure in the presence of time-varying confounders requires
special attention [Herndn, M. A., and Robins, J. M. [2023].

Finally, it would also be interesting to relax the assumption
that failures can only occur through the path of the root
cause, and explore the impact of direct and indirect effects.
In this case, mediation analysis is a specific application of
counterfactuals that seeks to identify and explain the mech-

anism or process that underlies an observed relationship
between an independent variable (i.e., the root cause) and a
dependent variable (i.e., the failure effect) via the inclusion
of a third variable, known as a mediator variable, an inter-
mediary variable, or an intervening variable [VanderWeele.
T. J.,[2016} |Agler, R., and De Boeck, P.,[2017]].

6 CONCLUSION

This workshop paper has developed a complete top-down
counterfactual Root Cause Analysis approach from first
causal inference principles that is also compliant with in-
dustrial development guidelines. On the basis of processing
multivariate time series data, the focus of this diagnosis
challenge has been put on detecting the Point of Incipient
Failure, which displays the first anomaly pattern before the
issue propagates to the rest of the system. This moment in
time is believed to be where the root cause is most likely to
be found. This hypothesis has been illustrated on a synthetic
system showing how one single counterfactual is sufficient
to explain the anomalous behavior, therefore pinpointing
the root cause of the eventual failure problem.
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