A skim through HARK, a modular OSS system for robot audition

Alexandre Trilla

October 2011

- 1 Introduction to HARK
- 2 HARK approaches to noise reduction
- 3 HARK modular framework
- 4 Application of HARK

- 1 Introduction to HARK
- 2 HARK approaches to noise reduction
- 3 HARK modular framework
- 4 Application of HARK

Introduction to HARK

Robot audition: robot capability of listening to several pieces of speech at once by itself

- Critical issue: Real-Time (RT) processing in a noisy environment
 - Near-end speech (headset microphone) → OK
 - High Signal-to-Noise Ratio (SNR)
 - Far-end speech (distant speaker) \rightarrow KO
 - Low SNR (attenuated speech signal + additive noise)
 - Typical Automatic Speech Recognition (ASR) fails mainly due to the single channel limitation

- 1 Introduction to HARK
- 2 HARK approaches to noise reduction
- 3 HARK modular framework
- 4 Application of HARK

HARK approaches to noise reduction

ASR preprocessing through microphone-array-based techniques

- \rightarrow Signal space diversity \rightarrow SNR increase
 - Directional noise → Sound source localisation and separation
 - <u>if</u> (direction of arrival between two sources > 20° <u>and</u> #microphones > #sources), <u>then</u> every source can be separated (in theory)
 - Diffuse noise (e.g., babble noise) → Speech Enhancement
 - Does not include direction explicitly
 - Reverb noise (acoustic enclosure)
 - Early (intra-frame in ASR, ~ 25ms) → Acoustic model improvement
 - Late (inter-frame in ASR, ~ 200ms) → No fixed model can be assumed → Adaptive filtering
 - Ego noise (internal) → Template-based method using joint status info (to be implemented)

ASR of separated speech \rightarrow Time-frequency map of reliability to be robust against spectral distortion due to separation

- 1 Introduction to HARK
- 2 HARK approaches to noise reduction
- 3 HARK modular framework
- 4 Application of HARK

HARK modular framework

- Dataflow programming with FlowDesigner as middleware
 - Network of modules connected dynamically at runtime
 - Well balanced trade-off between independence and processing speed
- Functional modules [Nakadai et al., 2008, Nakadai et al., 2011]
 - MUSIC: Adaptive beamformer for sound source localisation
 - Compromise between robustness for environment change and peak performance
 - GHDSS-AS: Hybrid beamformer and Blind Source Separation for sound source separation
 - Geometric constraints obtained from the locations of the microphones and sound sources
 - HRLE: Histogram-based method for Speech Enhancement
 - MFT-ASR: Feature masks to cope with distortions for ASR

HARK modular framework

- Multichannel audio device: usually 8ch., although HARK does not specify any number
- Online & RT processing (30ms frame + 10ms overlap)
 - Module processing time < 10ms \rightarrow 3750 computer instructions (single core μ -P, 1.5GHz, 4 CPI, optimised C/C++ compiler) for processing 480 samples (30ms frame at 16KHz) seems feasible
- Function-call based integration with ManyEars
 - Steered beamforming, particle-filtering-based tracking, etc.

- 1 Introduction to HARK
- 2 HARK approaches to noise reduction
- 3 HARK modular framework
- 4 Application of HARK

Application of HARK

- Dialogue system based on a deterministic Finite-State Automaton, e.g., rock-paper-scissors game referee [Nakadai et al., 2011]
- Dialogue system based on simple heuristics, e.g., meal order taking [Nakadai et al., 2011]

Bibliography

Nakadai, K., Okuno, H. G., Nakajima, H., Hasegawa, Y., and Tsujino, H. (2008).

An Open Source Software System For Robot Audition HARK and Its Evaluation.

Proc. of IEEE-RAS International Conference on Humanoid Robots, pages 561-566, Daejeon, Korea.

Nakadai, K., Okuno, H. G., Takahashi, T., Nakamura, K., Mizumoto, T., Yoshida, T., Otsuka, T., and Ince, G. (2011).

Introduction to Open Source Robot Audition Software HARK.

In Journal of the Robotics Society of Japan.

A skim through HARK, a modular OSS system for robot audition

Alexandre Trilla

October 2011