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ABSTRACT
This paper describes the development of a causal diagnosis ap-
proach for troubleshooting an industrial environment on the ba-
sis of the technical language expressed in Return on Experience
records. The proposed method leverages the vectorized linguistic
knowledge contained in the distributed representation of a Large
Language Model, and the causal associations entailed by the em-
bedded failure modes and mechanisms of the industrial assets. The
paper presents the elementary but essential concepts of the solu-
tion, which is conceived as a causality-aware retrieval augmented
generation system, and illustrates them experimentally on a real-
world Predictive Maintenance setting. Finally, it discusses avenues
of improvement for the maturity of the utilized causal technology to
meet the robustness challenges of increasingly complex scenarios
in the industry.
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1 INTRODUCTION
The degradation of industrial assets is a complex multifaceted prob-
lem that can be explained by different factors. As the components
wear and deteriorate, the systems exhibit a series of changes that
increase in severity until they eventually fail. In this case, failure
patterns may also emerge. For instance, in the Reliability Engineer-
ing field, assets are most expected to fail either prematurely (early)
during their break-in period, or late by the end of their remaining
useful life (wear-out) [10]. These failure types can be anticipated
because their modes, mechanisms, and effects, are well known and
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documented. In consequence, engineers introduce quality checks
in the manufacturing process and inspection actions in their (more-
or-less conservative) preventive maintenance schedule to mitigate
their impact. However, for as long as the machines operate, fail-
ures may seem to appear “randomly” at any point in time. This
is especially challenging for dependable assets while they transit
the middle risky region, when the failure rate is relatively low, but
uniform/constant.

In this uncertain setting, the field of Predictive Maintenance
tackles the problem by introducing the data as a means to closely
follow the actual evolution of each asset and make better informed
and timely decisions [12]. In this sense, the detection of incipient
anomalous behaviors and the capacity to diagnose their root causes
and predict their solutions towards a more favorable prognosis be-
come increasingly important to guarantee the availability of the
machines.

To succeed in these multiple objectives, the required information
and knowledge, which displays a clear causal character, is typi-
cally described and compiled in textual form through two different
(linguistic) environments [7]. On the one hand, an ontological ref-
erence framework based on a Failure Mode, Mechanism, and Effect
Analysis (FMMEA) [15], which provides a scholarly structure of
causality driven by degradation. On the other hand, a methodolog-
ical/epistemological approach via an actual record on Return On
Experience (RoX), the data of which have been explicitly written for
the purpose of explaining both the root causes and solutions of the
reported failures. In both environments, several experts inherently
identify which properties of the observations describe spurious
correlations unrelated to the causal explanation of interest, and
which properties represent the phenomenon of interest, i.e., the
stable invariant associations.

Traditional approaches for processing language in Predictive
Maintenance settings have initially considered the idiosyncrasies
of technical environments [6], and have evolved into exploiting
Large Language Models [23], ontologies [43], and extracting re-
current problems and frequently suggested solutions [35]. Almost
concurrently, the community of natural language processing and
computational linguistics identified causal challenges in textual
data [11], and these were soon also considered in the technical
domains as a means to explain the degradation mechanisms by
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developing custom word embeddings [37] and unconfounded sub-
system structures [38].

This workshop paper holds the hypothesis that root causes and
solutions can be learned directly from the textual expressions found
in field-specific RoX data, which are fully aligned with the Smart
Troubleshooting objective: given the description of a problem, the
system shall be able to accurately determine the related root cause
and solution. The paper is organized as follows: Section 2 reviews
the modeling fundamentals of Causality and Language, Section 3
describes the proposed causal diagnosis method from the stand-
point of standard Predictive Maintenance, Section 4 illustrates the
implementation of the method on a specific illustrative example,
Section 5 discusses avenues of improvement to increase the robust-
ness of the approach, and Section 6 concludes the work.

2 BACKGROUND
This section presents the basic notions on how tomodel the environ-
ment under analysis, both from a causal and a linguistic perspective.

2.1 Structural Causal Model
The causal links among the variables 𝑋 that build the model of a
system are assumed to be most effectively represented using the
tools from the field of Causality. In this sense, the Structural Causal
Model (SCM) is the framework that can most generally capture such
directed associations [31]. The SCM defines a set of assignments
governing their specific functional associations 𝑓 , along with some
independent exogenous noise 𝑁 that accounts for everything that
is not explicitly included in the model:

𝑋 𝑗 := 𝑓𝑗 (𝑃𝐴 𝑗 , 𝑁 𝑗 ) , (1)

where 𝑃𝐴 𝑗 represents the direct causes of the 𝑋 𝑗 variable.
If enough knowledge and experience from the field is available

from the subject matter experts, e.g., through the FMMEA or RoX
structures, then a complete SCM graph may be developed right
from the start. Otherwise, the data need to be carefully leveraged
to drive the discovery of the causal model.

2.1.1 Causal Bayesian Network. Once the structural graph that
binds the variables is determined, the functional associations of the
SCM may be learned, and this work specifically adopts a stochastic
interpretation of the world. Therefore, it treats all 𝑋 as random
variables, and the resulting SCM statistically describes their (condi-
tional) probability distributions.

Considering 𝑛 random variables 𝑋1, 𝑋2, ..., 𝑋𝑛 and a directed
acyclic graph that relates them causally, a Causal Bayesian Network
(CBN) is a generative model that has the following factorized joint
probability distribution:

𝑃 (𝑋1, ..., 𝑋𝑛) =
𝑛∏
𝑗=1

𝑃
(
𝑋 𝑗 |𝑃𝐴 𝑗 , 𝑁 𝑗

)
. (2)

The graphical nature of Bayesian networks allows seeing rela-
tionships among different variables, and their conditional depen-
dencies enable performing probabilistic inference [1]. In particular,
CBN are powerful tools for knowledge representation and inference
under uncertainty [33].

2.2 Causal Inference
Beyond probabilistic inference, Causal Inference provides the tools
that allow estimating causal conclusions from observational data,
i.e., in the absence of a true experiment, given that certain assump-
tions are fulfilled. These assumptions increase in strength as is
defined in Pearl’s Causal Hierarchy (PCH) abstraction [5], which is
summarized as follows for the purposes of this paper.

2.2.1 PCH Rung 1: Associational. Describes the observational dis-
tribution of the factual data through their joint probability func-
tion 𝑃 (𝑋 ). From this point forward, interesting quantities, i.e., the
queries 𝑋𝑄 , can be directly computed given some evidence 𝑋𝐸
through their conditional probability, which is computed as a ratio
of marginals:

𝑃 (𝑋𝑄 |𝑋𝐸 ) =
𝑃 (𝑋𝑄 , 𝑋𝐸 )
𝑃 (𝑋𝐸 )

. (3)

This level of analysis displays a degree sophistication akin to
classical (un)supervised Machine Learning techniques. As such, it
is subject to confounding bias, where common causes may induce
spurious statistical associations/correlations [34].

2.2.2 PCH Rung 2: Interventional. Describes an actionable distribu-
tion, which endows causal information at the population level. This
level of analysis can be achieved through actual experimentation
via Randomized Control Trials, or through statistical adjustments
that smartly combine the observed conditional probabilities to re-
duce the spurious associations in the estimation. Pearl’s 𝑑𝑜-calculus
is likely to be the most effective approach to determine the identi-
fiability of causal effects by applying the following three rules: 1)
insertion/deletion of observations, 2) action/observation exchange,
and 3) insertion/deletion of actions [30].

2.3 Language Model
Finally, to operate with textual data, there is the need to numerically
represent linguistic information in the former “generic” variables
𝑋 . To this end, Probabilistic Language Models are functions that
assign a probability to a sentence, to eventually build up a whole
piece of text. Traditionally, in such statistical models the sentences
have been broken down, i.e., tokenized, into sequences of words,
and the goal has been to predict the probability of an upcoming
word [18, 26]:

𝑃 (𝑋𝑛+1 |𝑋0, ..., 𝑋𝑛−1, 𝑋𝑛) . (4)
Today, with the advent of distributed representations of words

and phrases [28], along with the Transformer neural architec-
ture [39], long texts are directly represented in dense vector spaces,
and the task of the resulting Large Language Models is now to
provide responses to carefully engineered input prompts [8].

3 METHOD
This section details the Smart Troubleshooting objectives and the
analysis procedure to attain them, which focuses on providing
root cause diagnostics and predictions of solutions for a problem
observation based on written text data. Since the applied industrial
environment belongs to the area of Predictive Maintenance, the
consideration of a common development standard such as the ISO
13374 is recommended [16]. This specification breaks down the
complexity of a problem into small modules that may be developed
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in isolation, thus increasing the chances of project successwhile also
improving the interpretability and explainability of the technical
solution, and help to reduce the technical debt. What follows is
a description of the Data Manipulation and Health Assessment
processing blocks.

3.1 Data Manipulation
Causality is an emergent property of complex industrial systems [44].
In this setting, linguistic variables constitute high level qualitative
descriptions that group functions into categories and hierarchies,
as is established by the FMMEA documentation.

3.1.1 Return On Experience Records. In the Smart Troubleshoot-
ing setting, the RoX text data are collected as a means to capture
and describe the factual ontological relationships observed in the
field [37]. They display the following variable type structure:

• Subsystem Z (common context): Categorical
• Root Cause C (problem source): Categorical
• Observation O (reported problem, failure): Text
• Solution S (repair/maintenance action): Text

This data structure is populated from several projects or envi-
ronments, which exhibit some differences regarding the verbosity
of the language used to describe the problem and its solution.

3.1.2 Textual Entailment. The concept of entailment refers to the
directional nexus between text fragments. Regarding the RoX data,
these assumed relations are encoded in the following graph:

Z

C O

S

Figure 1: Graph showing the RoX variable relationships.

The diagram shown in Figure 1 explicitly states that:
• (C) is the root cause of the observed problem (O).
• (S) is both the effect of the observed problem (O) and its root
cause (C).

• (Z) is a general confounder, i.e., a common cause.
Once the text data for (O,S) is available in raw format it must be

cleaned before doing any further processing. This involves lower-
casing, punctuation removal, lemmatization/stemming, stop word
filtering, etc.

3.1.3 Text Embeddings and Large Language Models. Probably one
of the most challenging parts of this environment is the embedded
numerical representation of the text, which is typically considered
as unstructured data. The approach described in this method has
been implemented using a discrete categorical representation ob-
tained with a “BERTopic” Large LanguageModel [14]. The proposed
strategy integrates: 1) MiniLM [40], which is a compressed version
of Sentence-BERT (i.e., a Transformer-based language model at the
sentence level), 2) UMAP [27], which reduces the dimensionality of

the embedded vector space, and 3) HDBSCAN [25], which clusters
and quantizes the resulting low-dimensional representation.

3.2 Health Assessment
In the Smart Troubleshooting environment, one of the main chal-
lenges is dealing with the confounding bias introduced by the diver-
sity of subsystems and components. To this end, Causal Inference
techniques are utilized in the technical language processing sce-
nario to extract relevant linguistic features from the text [11].

This module exploits the probabilistic SCM, which has been
designed as a discrete category based Bayesian network following
the structure of the RoX data, and conducts a fine-grained diagnosis
of the observed input anomaly description by determining its root
cause, and also by providing an unbiased estimation of the (most
likely) potential solution.

3.2.1 Root Cause Analysis. Root Cause Analysis (RCA) is a trou-
bleshooting method of problem solving used for identifying the
sources of the failures [42]. RCA is a form of deductive inference
since it requires an understanding of the underlying causal mecha-
nisms for the potential faults and the problem, i.e., what is typically
found in the context of PredictiveMaintenance through the FMMEA
documentation.

The discrete causal Bayesian Network is suitable for exploiting
the categorized description of an observed problem (i.e., the effect)
and predicting the likelihood of the several possible known causes.
Thus, estimating the likely root causes amounts to computing the
conditional probability diagnosis function 𝑃 (𝐶 |𝑂). Note that this
estimand operates on the Observational rung of the Hierarchy of
Causality, see Section 2.2.1. Eventually, RCA yields a ordered list of
potential root cause variables along with their probabilities, which
aligns with the way complex systems fail [9]. The variables that
comprise the data are required to be representative enough to help
the developers and engineers pinpoint the source of the observed
problems through the root causes and their effects [41].

3.2.2 Solution Generation. Predicting the solution is especially
challenging due to the large cardinality of the Observation and
Solution spaces (O,S). To obtain an unbiased result, an (atomic) in-
tervention shall be performed. This represents an action 𝑑𝑜 () that
is conducted on a system to set (not filter via conditioning) its vari-
ables 𝑋𝑖 to known values 𝑥𝑖 and then evaluate their impact/effect
on other variables 𝑋𝑘 , i.e., 𝑃 (𝑋𝑘 |𝑑𝑜 (𝑋𝑖 = 𝑥𝑖 )). This constitutes an
advanced level of analysis that is not attainable with the observed
data alone: it also needs to account for the assumptions encoded in
the causal model in the form of variable dependencies. As a result,
the aforementioned confounding bias in the estimation is reduced
through the following adjustment formula:

𝑃 (𝑆 |𝑑𝑜 (𝑂)) =
∑︁
𝐶,𝑍

𝑃 (𝐶 |𝑍 ) 𝑃 (𝑆 |𝐶,𝑍,𝑂) 𝑃 (𝑍 ) . (5)

Note that this estimand operates on the Interventional rung of
the Hierarchy of Causality, see Section 2.2.2. Its computational
burden can be somewhat alleviated if the single most likely Cause
is already determined by the former RCA procedure.

Once the representation of the most likely Solution category (S)
is reliably determined, the associated text needs to be generated. To
this end, its related textual records S are retrieved from the dataset



KDD 2024 Workshop, August 26, 2024, Barcelona, Spain Trilla et al.

and used to prompt a pretrained “Llama2” Large Language Model
(LLM) to obtain a natural language explanation [36].

Prompt design and engineering have rapidly become essential
for maximizing the potential and utility of a LLM [2]. A prompt is
constructed by combining instructions, questions, input data, and
examples. Prompt engineering requires a blend of domain knowl-
edge, understanding of the AI model, and a methodical approach
to tailor queries to different contexts. For Smart Troubleshooting,
the following query text Q is used:

Given Observation: O, with possible root Cause(s):
C, the indications for Solution used in previous
similar cases using the predicted category are: S.

Beyond asking a simple question, possibly the next level of so-
phistication in a prompt is to include some instructions on how the
LLM should answer the question:

You are an advanced smart troubleshooter assistant
designed to advise experts in diagnosing and solving
problems by answering questions about the possible
solutions the expert should consider to fix the
failure described by the Observation and Cause in
the query. The smart troubleshooter should provide
solutions to diagnose and solve problems.
Additionally, the troubleshooter should provide an
explanation for the role of each proposal and should
use appropriate forms for verbs and sentences.

The smart troubleshooter should also refrain from
redundancy or repetition of steps. The smart
troubleshooter always answers as helpfully as
possible. It is crucial that all the propositions
should always be presented using:
" - Option/Solution "
or any other listing format like this example layout:
" - Option 1 : here the text

- Option 2 : here the text... "

Additionally, the field of Causality has a priviledged position in
developing trustworthy intelligent systems [13]. For that reason,
given that the pretrained LLM has learned from a large collection
of (possibly uncontrolled) documents, it is advised to include some
warning considerations (e.g., using safe bias-free language) regard-
ing the integrity of the generated outcomes:

The smart troubleshooter should avoid harmful,
unethical, racist, sexist, toxic, dangerous, or
illegal content, and ensure that the responses are
safe, socially unbiased, and genuinely positive. If
the smart troubleshooter doesn't know the answer,
they should say so. It is crucial that the smart
troubleshooter never provides too specific details
in their generated statements. Finally, the
troubleshooter should follow the layout mentioned
above for the answers and should always include any
relevant information from the Observation and
Cause(s) given, without mentioning their indexes or
references.

Now, give the Solution to this query: Q.

Table 1: Ranking of the 5 most probable potential root causes
(out of 20 categories).

Potential Root Cause Probability

Part physically damaged 0.9012
Accident 0.0052
Incorrect maintenance 0.0052
Insufficient lubrication 0.0052
Leakage 0.0052

4 RESULTS
This section develops the experimental work through one illustra-
tive example in the Predictive Maintenance domain. The causal
model has been trained on several projects with RoX dataset sizes
between 4k and 20k records, yielding average accuracy root cause
classification scores over 80% (and over 70% for precision and recall).

4.1 Data Observation
The specific exemplifying instance displays the following RoX data
descriptions:

• Subsystem: Suspension
• Root Cause: Part physically damaged
• Observation: “failure mechanical brake trailer and use elec-
trical release kph brake”

• Solution: “download showed only one instance of failure on
trailer with loss of comms with bcu this fault cleared when
tramwas put i nto to remove brake isolation however on tram
being put back into s axle failed to apply download showed
w at fault cor re ct reporting checked end switch discon-
nected and found verdigris on pins new loom made up and
fitted fault still present so ch anged proximity switch tram
te ran to bulwell and back with tct all probes alignedthrough
coasting all trailer proximity swi tches and looms cleaned
and checked”

The data for this record are shown for qualitative comparative
purposes. In a live real-world Smart Troubleshooting setting, the
maintainer or engineer shall provide the description of the ob-
served problem only, and the system shall add value by producing
the diagnosis results in terms of the root cause(s) and the likely
solution(s).

4.2 Results Prediction and Retrieval
Table 1 shows the resulting distribution of root causes. Note that
the correct cause leads this ranking, and the rest are given a smooth
uniform value.

Similarly, Table 2 shows the resulting distribution of potential so-
lutions. While the identification number of the Solution category is
not very informative by itself, note that the cluster that it represents
is likely to have many descriptive instances in the dataset.

What follows is a list of the textual statements that can be re-
trieved from each of the records that share the same leading poten-
tial solution category (i.e., the top one associated to the identifica-
tion number 274):
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Table 2: Ranking of the 5 most probable potential solutions
(out of 302 categories).

Potential Solution Probability

274 0.0565
244 0.0169
52 0.0146
90 0.0135
10 0.0104

• handover from off coming shift was to torque the hangar
bolts old bolts used sourced new bolts re secured track brake
torque t i ghtened and height set

• drain oil from axle and top back up found lots of meatal on
magnet when topping axle back up found that the axle has
snapped bog i e needs new axle fitting

• corroded areas addressed and all corrosion removed areas
coated with two coats of loctite corrosion inhibitor

• damaged cable removed and replaced with new
• fitted new outer rubbers and ended up having to fit new
center rubber strip to a cab as well

• hole drilled out and re tapped bracket then fitted

4.3 Prompt-based Generation
Finally, based on the given problem Observation text, on the most
likely Root Cause, and on the text retrieved from the most likely
unbiased Solution, the LLM can now synthesize the following en-
hanced advisory:

• Solution 1: Check and Replace Bolts. As the possible cause
suggested is failure of handover from the off-coming shift,
which resulted in torquing the hangar bolts using old bolts,
it is possible that the bolts may have been loose or damaged.
Therefore, check and replace the bolts to ensure they are
tightened properly to secure the suspension.

• Solution 2: Address Oil Leakage. Another possible causemen-
tioned is oil leakage from the axles, which can cause damage
to the suspension and affect the braking system. Check for
oil leakage around the axle and replace any damaged seals
to prevent further damage.

• Solution 3: Replace Snapped Earth Cable. Previous observa-
tion mentions that a snapped earth cable was found, which
can cause electrical issues in the braking system. Replace the
snapped earth cable to ensure proper electrical connection
and prevent any further failures.

• Solution 4: Address Corrosion. Corrosion can affect the sus-
pension and braking system, leading to safety issues. Check
for any signs of corrosion in the suspension and braking com-
ponents and address them accordingly. Apply anti-corrosion
measures, such as applying Loctite corrosion inhibitor, to
prevent further damage.

• Solution 5: Adjust or Replace Fixings. Previous observation
mentions that some fixings were found to be below spec,
which can affect the suspension. Adjust or replace any fixings
that are found to be damaged or not secure enough to ensure
proper suspension.

• Solution 6: Inspect Sanding Compressor. Previous observa-
tion mentions that the sanding compressor was rebuilt, but
faults were still present after testing. Inspect the compres-
sor and its components to identify any potential issues and
address them to prevent any further failures.

• Solution 7: Address Worn Cable Insulation. Previous obser-
vation mentions that the cable insulation was found worn
through, which can cause electrical issues in the braking sys-
tem. Address any worn-out cable insulation to ensure proper
electrical connection and prevent any further failures.

• Solution 8: Replace Damaged Component. Previous obser-
vation mentions that a damaged mudflap was found, which
can affect the suspension and braking performance. Replace
any damaged components to ensure proper operation of the
suspension and braking system.

It is important to note that these proposed solutions are based
on the given information and any previous records, and they may
not be exhaustive. However, most of them correctly advise a re-
placement action (for a part that is physically damaged).

Finally, while the way to quantitatively (i.e., objectively) evaluate
the LLM-generated outcomes is still an open research question
driven by correlational (i.e., not necessarily causal) scores [20], these
qualitative (i.e., subjective) results suggest a reasonably promising
future to help the subject matter experts troubleshoot the failures
in challenging industrial settings.

5 DISCUSSION
Apparently, the quality of the text generated by the LLM seems
higher than what the staff write on the RoX records: it shows more
clarity, better diction, and better spelling. Nevertheless, there are no
safety guarantees against hallucinations, and state-of-the-art LLMs
are also subject to irrational behavior and reasoning breakdown
even on simple tasks [24, 29].

Up to this point, the approach presented in this workshop paper
has described the basic principles of its causal RCA and Solution
Generation technology, and an initial experimental proof of con-
cept has been shown. This early stage of maturity corresponds to
a standard ISO 16290 Technology Readiness Level (TRL) between
4 and 5, because it has been validated in some real-world relevant
environments [17]. This section brainstorms some avenues of im-
provement to increase this robustness indicator up to higher quality
standards, considering the specific challenges of complex industrial
environments, and to eventually demonstrate the technology in an
operational environment (TRL 6–7).

5.1 Vector Database
One first idea could be to improve the granularity of the (currently
discrete categorical) linguistic representation in the Causal Bayesian
Network. The approach presented in Section 2.1.1 first embeds the
unstructured text data into a large vector space, then it reduces
the dimensionality of this real-valued numerical description, and
finally it quantizes the resulting low-dimensional representation to
obtain a categorical random variable. At each step, though, some
information is lost due to compression, and while this is especially
advantageous to decrease the complexity of the ensuing (discrete)
probabilistic model, maybe it also introduces some unnecessary
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limitations. Therefore, to potentially improve this situation, Hybrid
Bayesian Networks may be helpful to represent the Observation
and Solution texts with their original vectors (note that the Sub-
system and the Root Cause variables shall retain their categorical
nature). Hybrid Bayesian approaches, which are able to simulta-
neously model both discrete and continuous variables [3], have
already enjoyed success in multivariate domains for predicting de-
lays in operations [21], and also in the reliability assessment of
large infrastructure networks [45].

In this new modeling scenario, the text may exploit the larger
distributed representation of the LLM embedding, which is charac-
terized by a set of independent real-valued dimensions. For retrieval
purposes, the most likely vector 𝑣∗ in the embedded linguistic space
𝑉 = (𝑣0, 𝑣1, ...) could first be obtained as:

𝑣∗ = max
𝑣0,𝑣1,...

∏
𝑖∈𝑉

𝑃 (𝑣𝑖 ) , (6)

and then the matching with the RoX records could be conducted
using the cosine distance metric that has traditionally been sup-
ported by the statistical language processing field. However, it
remains to be seen how the curse of dimensionality will affect
the technical setting. In any case, this realignment with the well
established techniques may be of help to increase the TRL.

5.2 Transportability
Generalizing empirical findings to new environments or popula-
tions is necessary in the Smart Troubleshooting setting because
there are different projects and fleets considered, and each environ-
ment exhibits particularities in the written form of the text data.
The concept of “transportability” is defined as a license to transfer
information learned in one environment or domain to a different
environment [4], and thus reduce the covariate shift problem.

Transportability analysis assumes that enough structural knowl-
edge about both domains is known in order to substantiate the
production of their respective causal diagrams. To formally articu-
late this transfer procedure, a selection variable 𝐾 must be intro-
duced to represent the differences between the deployments. In
the RoX-based Smart Troubleshooting setting for the industry, the
assumption is that the only relevant difference among the environ-
ments is driven by the population of subsystems, thus 𝐾 → 𝑍 (in
fact, some components are only present in specific platforms and
assets, so this premise is well founded). The resulting transport
formula to generate solutions from a source environment 𝐴 to a
target environment 𝐵 is shown as follows:

𝑃𝐵 (𝑆 |𝑑𝑜 (𝑂)) =
∑︁
𝐶,𝑍

𝑃𝐴 (𝐶 |𝑍 ) 𝑃𝐴 (𝑆 |𝐶,𝑍,𝑂) 𝑃𝐵 (𝑍 ) . (7)

If one particular environment 𝐵 is found to be especially lack-
ing in some aspect, then the rest of the environments 𝐴 can be
used to estimate the desired probabilistic distribution. This smart
workaround to a direct data shortage problem that leverages the
indirect data from multiple settings is expected to increase the ro-
bustness of the predicition, which in turn may help to increase the
TRL of the final solution.

5.3 Counterfactual Analysis
So far, the main focus of the analysis has been put on the observed
factual data at the population level. However, these data represent
only one of the many potential outcomes the system could have
experienced: had things been different, an alternative outcome may
have been observed. In this sense, a counterfactual describes a
potential distribution at the individual level driven by hypothetical
speculations over data that may contradict the facts. This level
of analysis constitutes an additional third rung in the Hierarchy
of Causality described in Section 2.2. Conducting this estimation
requires the following three steps [32]:

(1) Abduction: Beliefs about the world are initially updated
by taking into account all the evidence 𝐸 given in the con-
text of a single instance/unit. Formally, the exogenous noise
probability distributions 𝑃 (𝑈 ) are updated to 𝑃 (𝑈 |𝐸).

(2) Action: Interventions are then conducted to reflect the coun-
terfactual assumptions, and a new causal model is therefore
created.

(3) Prediction: Finally, counterfactual reasoning occurs over
the new model using the updated knowledge.

Gaining access to such involved analysis creates a new area of
research to enhance Predictive Maintenance.

5.3.1 Algorithmic Recourse. Algorithmic Recourse is an approach
that systematically explores these counterfactual worlds [19]. Such
environments are simulated via inference through (atomic) inter-
ventions 𝛼 in the form of alternative problem descriptions. This
is expected to help in the recognition and understanding of the
general root causes that lead to the system failure [22], and the
solution advisory that leads to greater availability.

Formally, the specific retrospective reasoning that these counter-
factuals explore on the reported anomaly, i.e., the full description
of the solved problem, can be stated as:

𝑃 (𝑆∗ |𝑑𝑜 (𝑂 = 𝛼), 𝑍,𝐶,𝑂, 𝑆) . (8)

Given that the solution of a problem was factually implemented
and recorded in the RoX data, i.e., through observing all of the vari-
ables (Z,C,O,S), Equation (8) estimates the probability distribution
of the textual representation of the hypothetical Solution 𝑆∗ had
the problem been described (and represented) by 𝛼 , instead of the
numerical representation it actually had when it was written. This
sophisticated degree of surgical detail enbales driving investiga-
tions to a deeper level, and this is regarded to help in the advance
of the TRL.

6 CONCLUSION
This workshop paper has developed a complete top-down trou-
bleshooting approach from first Causal Inference principles that
is also compliant with industrial development guidelines. On the
basis of processing technical language, the focus of this learning
challenge has been put on creating a distributed representation of
linguistic features, and exploiting it for the purpose of obtaining
unbiased causal diagnostics and solutions. This approach has been
illustrated through a relevant example in the Predictive Mainte-
nance domain, and the results arguably suggest a promising line of
future research toward a method to evaluate generative models in
other industrial settings.
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