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Abstract

This tutorial presents a thorough description of procedure to change
the sampling rate using discrete-time processing.

1 Introduction

The sampling premise states that a continuous-time signal xc(t) can be
represented by a discrete-time signal x[n], that consists of a sequence of
samples

x[n] = xc(nT ) (1)

related by the sampling period T . Then, it is possible to change the sam-
pling rate of the discrete-time signal, i.e., to obtain a new discrete-time
representation of the underlying continuous-time signal of the form

x1[n] = xc(nT1) (2)

where T1 6= T . This operation is called resampling. Conceptually, x1[n]
might be obtained from x[n] by reconstructing xc(t) and the resampling it
with the new sampling period T1. However, this approach is not practical
due to the nonidealities of the D/A and A/D procedures. Thus, it is of
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interest to consider methods of changing the sampling rate that involve only
discrete-time operations.

The process of reducing the sampling rate is called downsampling, while
the inverse process is called upsampling. The sampling rate is changed in
order to increase the efficiency of various signal processing operations. By
doing so, the requirements of the filters may be relaxed and thus their com-
plexity may be reduced significantly.

This tutorial is mostly based on [Oppenheim and Schafer, 2009]. Refer
to it for further details.

2 Downsampling by a natural factor

The downsampling process implies that T1 > T regarding Eq. (3). Therefore,
the new sequence results

xd[n] = x[nM ] = xc(nTd) = xc(nMT ) (3)

It follows that the xd[n] is the sequence that would be obtained from
xc(t) by sampling with period Td = MT , where M ∈ N and strictly M > 1.
From this operation it results that the bandwidth of xd[n] widens a factor of
M wrt the bandwidth of x[n], in addition to a magnitude attenuation of 1

M .
Hence, as long as the maximum frequency component of x[n] remains lower
than π

M , no aliasing is produced. In order to avoid any aliasing distortion
problem, though, x[n] should be prefiltered with a lowpass filter (in the
discrete-time domain) with ωc = π

M . With this prefiltering scenario, the
process is called decimation, see Figure 1.

x[n] x  [n]LPF M
d

Figure 1: Decimation process: an antialiasing filter precedes the sampling
rate compressor.

The frequency domain relation between the input and the output of the
compressor is obtained with the discrete-time Fourier transform (DTFT) of
the signals involved. For an input signal x[n] = xc(nT ), the DTFT of this
sequence is related to the Fourier Transform of the continuous-time input
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signal by ω = ΩT , therefore

X(ejω) =
1
T

∞∑
k=−∞

Xc

[
j

(
ω

T
− 2πk

T

)]
(4)

Similarly, the DTFT of xd[n] = x[nM ] = xc(nMT ) is

Xd(ejω) =
1
MT

∞∑
r=−∞

Xc

[
j

(
ω

MT
− 2πr
MT

)]
(5)

Note that Xd(ejω) is attenuated by a factor of M wrt X(ejω) and spread
in frequency by the same factor, see Figure 2.

j ωX(e   )

j ω
dX  (e   )

20 π π

1/ΜΤ

1/Τ

BT BMT
ω

Figure 2: Frequency representation of the downsampling process.

Eq. (5) is related with Eq. (4) by the summation index r, as it can be
expressed as

r = i+ kM (6)

where k and i are integers such that −∞ < k <∞ and 0 ≤ i ≤M −1. As a
result, Eq. (7) expresses the Fourier transform of the discrete-time sequence
xd[n] (with sampling period M) in terms of the Fourier transform of the
sequence x[n].

Xd(ejω) =
1
M

M−1∑
i=0

X
(
ej(

ω
M
− 2πi
M )
)

(7)

Another interpretation of Eq. (7) would consider the ideal sampling, with
sampling period M , of the discrete-time sequence x[n]. Given that the
discrete-time modulating sampling sequence s[n] is periodic with period M ,
its discrete Fourier series (DFS) representation requires M harmonically-
related complex exponentials

s[n] =
∞∑

m=−∞
δ[n−mM ] DFS−−−−−→ s[n] =

1
M

M−1∑
i=0

ej
2πi
M
n (8)
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Note that the DTFT of xd[n] = v[nM ], where v[n] = x[n] · s[n], leads to
the same result as in Eq. (7):

V (ejω) =
∞∑

n=−∞
v[n] e−jωn (9)

=
1
M

M−1∑
i=0

∞∑
n=−∞

x[n] e−j(ω−
2πi
M )n (10)

=
1
M

M−1∑
i=0

X
(
ej(ω−

2πi
M )
)

(11)

Xd(ejω) =
∞∑

n=−∞
xd[n] e−jωn (12)

=
∞∑

n=−∞
v[nM ] e−jωn ← m = nM (13)

=
∞∑

m=−∞
v[m] e−j

ω
M
m = V

(
ej

ω
M

)
(14)

=
1
M

M−1∑
i=0

X
(
ej(

ω
M
− 2πi
M )
)

(15)

3 Upsampling by a natural factor

Consider a signal x[n] whose sampling rate is to be increased by a factor of
L, being L ∈ N. Considering the underlying continuous-time signal xc(t),
the objective is to obtain samples

xi[n] = xc(nTi) (16)

where Ti = T
L , from the sequence of samples x[n] = xc(nT ), hence using only

discrete-time processing tools. The operation of increasing the sampling rate
is called upsampling. It follows that

xi[n] = x[n/L] = xc(nT/L) n = 0,±L,±2L, ... (17)

Graphically,
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x[n] x  [n]LPFL x  [n] ie

Figure 3: Interpolation process: a reconstruction filter follows the sampling
rate expander.

The input discrete-time signal x[n] is first processed through an ex-
pander, obtaining xe[n],

xe[n] =
∞∑

k=−∞
x[k] δ[n− kL] (18)

Then, a lowpass filter with gain L and ω = π
L follows to reconstruct the

modulated discrete-time impulse train sequence xe[n].
In the frequency domain

Xe(ejω) =
∞∑

n=−∞
xe[n] e−jωn (19)

=
∞∑

n=−∞

( ∞∑
k=−∞

x[k] δ[n− kL]

)
e−jωn (20)

=
∞∑

k=−∞
x[k] e−jωLk (21)

= X(ejωL) (22)

Therefore, Xe(ejω) is a frequency-scaled version of X(ejω), so that ω is
normalised by

ω = ΩTi = Ω
T

L
(23)

see Figure 4.
Note that with this formulation the amplitude of the output of the in-

terpolating filter is L
T = 1

Ti
, that is the same that would be obtained from

sampling xc(t) with a sampling period of Ti directly.
This output satisfies Eq. (16) if the input sequence x[n] was obtained by

sampling without aliasing. Therefore, the system implementing this process
is called an interpolator, since it fills the missing samples, and the operation
of upsampling is consequently considered to be synonymous with interpola-
tion.
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Figure 4: Frequency representation of the upsampling process.

For an ideal implementation of the interpolation filter, its output would
be determined by its sinc-shaped impulse response

xi[n] =
∞∑

k=−∞
x[k]

sin[π(n− kL)/L
π(n− kL)/L

(24)

3.1 Linear interpolation filter

Although ideal lowpass filters for interpolation cannot be implemented, their
behaviour can be well approximated with a simple linear interpolation pro-
cedure. Linear interpolation provides the samples between two original sam-
ples (that would be obtained if a higher sampling frequency was used) in
a straight line joining the two original sample values. In discrete-time sig-
nal processing, this behaviour may be attained with a triangularly shaped
impulse response filter, see Eq. (25), applied on the expanded sequence of
samples (obtained by inserting zeros).

hlin[n] =
{

1− |n−L|L , |n− L| < L
0, otherwise

(25)

4 Sampling rate conversion by a rational factor

By combining interpolation and decimation in cascade (and in this order),
it is possible to change the sampling rate by a rational factor. This com-
bination produces an output sequence x̃d[n] that has an effective sampling
period of TM/L.

If M > L there is a net increase in the sampling period (a decrease in the
sampling rate), and if M < L, the opposite is true. For practical purposes,
the filters in question are combined as is shown in Figure 5.

According to the relation of M wrt L, either one or the other cutoff
frequency is the most dominant. So, the minimum of the two is taken for
the combination.
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Figure 5: Interpolation and decimation procedures in cascade.

5 Applications

The goal of modifying the sampling rate is to increase the efficiency of various
signal processing operations. A couple of situations where this objective is
exemplified are:

• Upsampling before D/A conversion in order to relax the requirements
of the analog lowpass antialiasing filter. This technique is used in
audio CD, where the sampling frequency 44.1kHz is increased fourfold
to 176.4kHz before D/A.

• In speech processing, a data compression may be applied by decompos-
ing the speech signal into several components, which may be quantised
with different word lengths.
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