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Abstract—The railway axlebox is a critical safety component in
rolling stock. It bears the weight of the train, and minimises the
friction with the rotating axle. Its failure in service might cause
derailment. Therefore, its maintenance is decisive. This article
presents a methodology to create a standard Health Index that
blends the hard threshold-based expert criteria developed at the
workshop, with a record of actual vibration data, in order to
increase the flexibility of its diagnostic and provide a soft granular
feedback. The proposed method makes use of an auto-encoder
neural network to accommodate two different approaches: one
based on the principal component of a set of vibration features,
and the other based on an anomaly detection scheme operating
directly at the vibration signal level. The results of the analysis
show that the former strategy provides a smooth uncertain index,
while the latter yields a sharp sensitive index. Such different
diagnosis designs are regarded as an opportunity to better fit the
vision of the maintenance course of action.

Index Terms—railway axlebox, health index, auto-encoder,
neural networks, principal component, anomaly detection

I. INTRODUCTION

The ability to diagnose component faults in their infancy
is currently limited due to sensitivity to signal noise, de-
pendence on environmental and operating conditions, lack of
fault detection, and uncertainties in maintenance schedules.
Consequently, most maintenance actions are reactive. Addi-
tionally, generic preventive diagnostics trigger alarms when
some key performance indicator degrades below an acceptable
threshold. However, such preventive maintenance is estimated
to be applied unnecessarily up to 50% of the time [1].

What is common among the former maintenance approaches
is the lack of understanding of the actual asset degradation,
and the use of conservative hard thresholds that disguise
this knowledge deficiency. The adoption of such a statisti-
cal process control strictly used as a quality check, misses
important aspects of the degradation process because the real
world is not discrete. Therefore, in order to tackle the need
for a more refined diagnostic, the predictive maintenance
approach suggests using a Health Index (HI) as a finer abstract
representation of an asset’s degradation.

The HI is a real-valued figure that encodes the condition of
an asset, implicitly aggregating the physical sensor data and

the failure modes that lead to the numerical diagnosis result.
It displays a monotonic decreasing evolution from 10 (brand
new condition) to 0 (scrap condition). Standard approaches to
Prognostics and Health Management (PHM) like ISO 13374
[2] contemplate the estimation of the HI within the Health
Assessment module. Other similar standard approaches like
ISO 13373 [3] are specific to vibration condition monitoring,
and suggest using 4 hazard zones. And ISO 10816 [4] even
defines the alarm thresholds regarding the type of machine
following a statistical analysis of a worldwide industry survey.

The context of the present work is framed in the mainte-
nance of axleboxes for the Northern Line metro in London,
where a condition-based maintenance approach with vibration
inspection has been conducted since 2004 with excellent train
availability results. The maintenance team that is responsible
for this project has traditionally approached axlebox diagnos-
tics with 3 condition states driven by the magnitude of the
vibration, which is a straight indicator of the failure severity
[5]. This strategy has led to a positive return of experience
after having detected a few incipient failures, and not having
experienced any in-service failure since the introduction of the
vibration monitoring programme. However, the high variability
of the vibration magnitude may lead to unsteady results, which
increases the rate of false alarms, and the lack of ability
to closely track the evolution of the degradation hinders the
possibility to plan for optimum maintenance resources at the
depot.

The goal of this article is to develop a standard HI adapted to
the Northern Line scenario, leveraging the knowledge gained
with experience, and exploiting its vibration monitoring data
and maintenance record. To do so, two different strategies for
creating the HI are compared and discussed: a traditional one
with a feature-based principal component, and a more inno-
vative one with a signal-based anomaly detection technique.
Additionally, both approaches share the auto-encoder neural
network framework, following the success of this technique
that appears in the recent state of the art for bearing diagnostics
[6]–[11]. This manuscript is organised as follows: Section II
describes the analysis procedure that has been pursued, in-



cluding the description of the data, the processing techniques,
and the method to create the HI. Section III conducts the
experiments and reports the outcomes. Section IV discusses
the overall results and the limitations of the approach, and
Section V concludes the manuscript and reflects on its impact
to the current maintenance process.

II. METHOD

This section describes the creation of a custom HI driven
by a record of vibration maintenance data.

A. Axlebox Monitoring Experience

The axlebox bearing is a heavy-duty safety-critical railway
component. Its replacement is envisaged to occur every 11
years according to the maintenance plan (during the overhaul
action). Also, it is regreased every 4 years, taking 2 years to
process the whole fleet, which has 106 trains. In addition, its
condition is regularly monitored with vibration inspection tests
in order to ensure it operates successfully.

In order to accomplish this monitoring, a sample of the fleet
consisting of 28 units (3-car trainsets that equip 24 axleboxes
each) is inspected every 6 weeks. The vibration signature of
each asset is acquired, and its condition is assessed by the
magnitude of its peaks, yielding three severity-ordered states:
good G, regular R, and bad B. Their specific thresholds were
designed by the maintenance team following their expertise.
Given the time that it takes to cycle through all the planned
maintenance actions, the diversity in the asset condition is
expected to be present in every acquisition test.

The vibration monitoring is conducted on a dedicated and
calibrated test track at the depot with a constant speed of
5mph. This test scenario maintains the wheel-track contact
noise at a minimum.

Finally, in order to explore the evolution of the degradation
and the life of the axleboxes for the Northern Line scenario,
the maintenance team set one train for such carefully con-
trolled experimental purposes. After 7 to 8 years of service
following the overhaul (i.e., fitting brand new axleboxes), the
condition of those assets correspond to the “regular” state.
Therefore, it can be estimated that the yearly wear rate in HI
units should be given by (1).

R−G
Service

=
5− 10

7.5
= −0.6667 HI/Y r (1)

Note that (1) gives a weight of 5 to the regular condition.
This is somewhat arbitrary, but given that it’s the average of
brand new and scrap conditions, it may be taken for a reliable
indication.

B. Vibration Data Collection

In order to acquire the vibration signature of the axleboxes,
a network of intelligent wireless sensors called The Motes is
used [12], [13], see Fig. 1. These sensors have been configured
to acquire 4 seconds of the vertical vibration axis (normal to
the ground), with a sampling frequency of 3.2kHz. This setting
ensures that enough wheel rotation is captured, and that the
vibration pattern is reliably represented.

Fig. 1. The Motes in use with an axlebox at the Morden depot in London.
The small window at the bottom-left corner also shows a tablet, which is used
on board to operate the network of sensors.
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Fig. 2. Auto-encoder architecture. D is the data dimensionality, and H is
the size of the hidden layer, which defines the representational capacity of the
network. The encoding character of the model is ensured as long as H < D.

The dataset of use in this work contains a maintenance
record of 2.5 years, with 6200 instances (i.e., the vibration
signature of each asset for a particular test).

C. Auto-encoder Neural Network

The auto-encoder neural network is a connectionist machine
learning technique that learns to replicate data. The model of
use in this work, which exploits auto-association [14], [15],
shows a convergent structure from its input dimensionality
D into H at half of its length, and then it diverges back to
D toward its output, showing a diabolo-like architecture, see
Fig. 2. Without loss of generality, the auto-encoders considered
in this work have one single hidden “bottleneck” layer, which
may have a variable number of hidden units H that define the
expressiveness of the network.

An auto-encoder is trained to encode the input into some
lower-dimensional representation so that it may thereafter be
reconstructed. Hence, the target output of the auto-encoder
is the auto-encoder input itself. As a result, the network
learns a compressed distributed representation of the data
that captures its main factors of variation [16]. The training



makes use of gradient descent with the mean-squared error
(MSE) of the reconstruction as the cost function. Once the
learning is complete (this is an offline procedure), the auto-
encoder can then quickly process new data through a set of
matrix multiplications [17], which is also very advantageous
for industrialisation purposes.

D. Feature-based Principal Component Auto-encoder

The classical approach to designing an automatic pattern
recognition system starts with a set of features extracted from
the raw input data. Thus, the list of vibration features of use is
shown as follows (most of them are described in [18], [19]):

0) Root mean square (RMS): energy content indicator. It
operates on the raw acceleration waveform. It shows a
positive correlation with fault severity.

1) Variance: signal dispersion indicator. It’s the second
central moment of its distribution.

2) Skewness: signal asymmetry indicator. It’s the third
central moment of its distribution.

3) Kurtosis: signal peakdness indicator. It’s the fourth cen-
tral moment of its distribution. A value of 3 is well-
recognised to belong to a good condition.

4) Shape factor: signal shape indicator related to its distri-
bution.

5) Crest factor: signal spikiness indicator. Typically used
as and impact detector.

6) Entropy: signal uncertainty indicator. Implemented as a
magnitude sign randomness indicator.

7) Velocity: velocity signal energy indicator [4]. The raw
acceleration signal needs to be numerically integrated
prior to computing its RMS.

8) Peak: expert fault severity indicator. It corresponds to
the maximum acceleration waveform value.

9) Clearance factor: fault indicator. A peak-based calcula-
tion.

10) Impulse factor: another fault indicator. Also, a peak-
based calculation.

11) High frequency noise: frequency-based fault indicator.
Faults develop noise in the high-frequency range [20].

In order to condense the amount of extracted information
for the metro environment at hand, the ranges of the afore-
mentioned features first need to be normalised to similar scale
values, and then their amount of correlation has to be reduced.
To do so, the Pearson correlation coefficient matrix is used, and
the features that show the least amount of mutual relation with
the others are selected. This reduces the amount of verbosity
at the feature level.

Finally, the Principal Component (PC) is extracted as an
aggregation of the resulting explanatory features. The PC is the
best one-dimensional linear projection of the feature data that
is optimal in a sum-squared error sense [21]. It can be obtained
using a feature-set auto-encoder with one single linear hidden
unit [17]. However, in this case, the more basic approach of the
Karhunen-Loève transform can also be used for computational
efficiency [22], generating an equivalent result: the PC is the

eigenvector of the feature covariance matrix that corresponds
to the largest eigenvalue.

Note that the extraction of the PC is an unsupervised process
driven by the maximum variance of the projected dimension.
A greater variance is assumed to contain more information, but
it must be ensured that the resulting PC follows the direction
of the signal, which is indicative of the health condition, rather
than the unrelated noise in the vibration data [21].

E. Signal-based Anomaly Detection Auto-encoder

An anomaly detector is a system that only models good
healthy data, and then uses this prototype to assess the simi-
larity or distance to the more degraded conditions. Therefore,
the machine health is summarised as one statistic: the amount
of deviation from healthy data [17].

The proposed approach represents the healthy raw vibration
signal directly (instead of the calculated vibration features)
with an auto-encoder, inspired by the recent advances in deep
learning. The detection of the anomaly occurs when there
happens to be a discrepancy between the input and the output
of the model: healthy samples show a small difference because
the auto-encoder can reliably reconstruct them, but degraded
samples get poorly reconstructed and thus display a larger
error.

This auto-encoder needs to be expressive enough to repre-
sent the complicated interactions at the raw vibration signal
level. In this sense, the hidden units also need to be non-
linear to help capture the multi-modal aspects of the input
distribution [16]. Thus, the hyperbolic tangent is used as the
activation function. This approach can be regarded as a non-
linear generalisation of the former component analysis [21].

F. Lagging Condition-weighted Average

The construction of a hybrid HI between expert and data-
driven criteria entails reaching an agreement between these
two complementary approaches to diagnosis. To do so, the
distribution of the numerical results obtained with the actual
field data, either with the principal component or with the
anomaly detection, are further reevaluated and labelled ac-
cording to the expert diagnostic that follows the magnitude
of the vibration. Then, with the resulting condition-driven
histogram, a rolling window the size of a bin is swiped along
the abscissa, from “good” condition to “bad”, and a weighted
average is computed, lagging the last computation to ensure a
monotonically decreasing evolution.

The two approaches being evaluated need to be forwarded
the same data in order to conduct a fair comparison. To do
so, the vibration acquisitions are segmented into chunks of
500 vibration samples (a 160ms signal), with an 80% overlap.
This is supported by the belief that the redundancy in the
data provides knowledge [23]. In addition, the first complete
segment is stripped and held out for validation to assess an
unbiased effectiveness result.

Finally, in order to characterise the representations of the
resulting condition-driven distributions, the Bhattacharyya dis-
tance (BD) is computed. The BD quantifies the amount of
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Fig. 3. Pearson correlation coefficient matrix of the vibration features. The
feature names are matched to their numbers in Section II-D.

overlap between two distributions. It is better at classification
than other measures, such as the Mahalanobis or the Kullback-
Leibler distances, due to the fact that it incorporates covari-
ances as well as means [24]. The closed-form formula of use
(2) assumes Gaussian distributions in the data.

BD =
1

8
(µ1 − µ2)T Σ−1(µ1 − µ2) +

1

2
ln

|Σ|√
|Σ1||Σ2|

(2)

In (2), Σ refers to the average covariance matrix between
the two distributions, i.e., the two health conditions being
evaluated. It is to note that this formula may still be used
even if the underlying distributions are not Gaussian [21].

III. RESULTS

The traditional approach with the feature-based principal
component yields the Pearson correlation coefficient matrix,
see Fig. 3. It shows that the most uncorrelated vibration
features (with a value smaller than 0.8) are: RMS, skewness,
entropy, velocity, impulse factor, and high frequency noise.
It is to note that the peak value that is used by the expert
diagnosis approach is highly correlated with several other
features. Therefore, it is excluded for the extraction of the
PC. The subsequent calculation of the HI is shown in Fig. 4.
It can be seen that the PC effectively captures the condition
information of the signal: the progression from the “good”
condition to the “bad” condition happens through the “regular”
condition, which is consistent with the expected degradation
evolution.

For the direct approach using the signal-based anomaly
detection auto-encoder, Fig. 5 shows the adjustment of the
network’s expressiveness. There is an inflection point (i.e., a
sudden change of slope) around 40 hidden units that starts to
bring the training and test errors closer. For this configuration,
the reconstruction fidelity of a vibration sample is shown
in Fig. 6. It can be seen how the auto-encoder learns the
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Fig. 4. Health Index based on the feature-based principal component auto-
encoder. The ordinate axis for the HI is the one on the right.
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Fig. 5. Auto-encoder expressiveness adjustment. The representational capacity
increases with the number of hidden units because the mean-squared error
(MSE) of the reconstruction decreases.

regularities of the data, and behaves like a low-pass filter on
the original signal, as if it was a de-noising system.

Finally, Fig. 7 shows the HI based on the reconstruction
error of the anomaly detection auto-encoder. This approach
displays a much more initial abrupt transition as the axlebox
condition degrades.

In order to provide further insight into the resulting func-
tions for the HI, Table I shows the Bhattacharyya distances
among the different conditions, for the two approaches. It is
to note that the anomaly detection auto-encoder provides a
solution with more separation among the health conditions.

IV. DISCUSSION

The approach to constructing a HI based on the feature-
based principal component shows smooth transitions along
the continuum of degradation. The inherent variance-based
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Fig. 7. Health Index based on the signal-based anomaly detection auto-
encoder. The ordinate axis for the HI is the one on the right.

information criterion is therefore effective to identify the
different condition states, which spread evenly along the range
of the independent variable. However, this is partly due to the
wide uncertainty that exists within each state. In contrast, the
HI based on the anomaly detection approach shows a narrow
uncertainty around the good condition, which results in a sharp
transition toward the remaining degraded space. Depending on
the focus of the maintenance, one approach might be more

TABLE I
BHATTACHARYYA DISTANCES AMONG THE CONDITIONS FOR THE

DIFFERENT HI APPROACHES.

HI Approach G-R G-B R-B
Principal Component 1.0999 3.7712 1.2709

Anomaly Detector 1.7149 4.3060 1.4899

appropriate than the other. It must be stated that the potential
sources of uncertainty that have not been accounted for in this
work are mainly driven by the accumulated bogie mileage, the
wheel tread conditions, and the car-level design differences:
driven, non-driven, and trailer.

It is interesting to note how the high-frequency noise
rejection ability provided by the signal-based auto-encoder
affects its performance to detect anomalies. The appearance of
high-frequency noise is precisely what indicates the presence
of a failure [20]. If the auto-encoder is adjusted so that it may
not accurately replicate this noise, which is present in degraded
data, then it becomes successful in recognising the anomalies.

It is also shown that regardless of the HI approach, its evo-
lution throughout the life of the axlebox is not linear with the
vibration indicator, contrary to what might be expected from
gradual mechanical wear. Perhaps this progressive evolution is
only present within each condition state, and thus the collected
dataset is too short to exhibit this extended change. In any case,
if the derivative of the HI is taken with respect to the time
difference of the acquisitions, seeking a wear rate estimate,
the resulting figures get much higher than the expected rate
provided by the experimental train. This leads to question the
condition weights used to construct the health indexes, which
stretch to the complete health range, from 10 to 0. Therefore,
the actual vibration dataset of use must only show a segment
of the entire HI span, probably somewhere between 7 and
4. Only then may the wear rates converge to similar values.
Besides, there are no brand-new nor collapsed bearings in the
fleet today, definitely, so it makes perfect sense to narrow
the observed health range. However, further prognosis-related
details are out of the scope of this study.

V. CONCLUSIONS

At present, the maintenance of axleboxes for the Northern
Line fleet is supervised with vibration inspection tests, and the
coarse diagnostic results provided by a small set of experience-
driven rules is just sufficient to identify potential developing
failures when the critical alarms are set. This article presents
a more refined approach to diagnostics with a standard Health
Index, that adds value to this expert focus with data from the
field, and enhances its finesse with additional criteria. Two
methods are compared for extracting this health function. On
the one hand, the principal component of the vibration features
provides a smooth, uncertain index. On the other hand, the
anomaly detector based on the vibration waveform provides
more certainty, especially around the healthy condition.

Finally, the auto-encoder has proven to be a very effective
and versatile technique for PHM. The future work that is
currently envisaged may delve into the intermediate repre-
sentations that can be obtained with the hidden units of the
encoding layer. At present, they are totally random, which
might make them inconsistent with the expected evolution of
the degradation. Maybe the topologically-preserving criteria of
other neural networks like the self-organising maps could be
of help to better understand them, and also provide new rep-
resentations able to adapt to other maintenance environments.
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