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Abstract

This tutorial presents a thorough description of the sampling proce-
dure of continuous-time signals in order to be processed by a discrete-
time signal processing system.

1 Introduction

In the context of this tutorial, unidimensional digital signals are obtained
from recording (and thus digitising) unidimensional analog signals that de-
pend on time (i.e. evolve in time). As a physical example of this procedure
the acoustic phenomenon is taken for convenience.

This tutorial is mostly based on [Oppenheim and Schafer, 2009], follow-
ing its notation. Refer to it for further details.

2 Acoustic signal

An acoustic signal represents the temporal evolution of acoustic pressure
variations in time, captured by the membrane of an electro-mechanical trans-
ducer (e.g., a microphone). These acoustic pressure variations are the local
atmospheric pressure deviations caused by a sound wave, produced by some
kind of acoustic source like the human voice or a musical instrument.
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The electro-mechanical transducer represents sound in the form of a
continuous-time (electrical) signal, and this signal needs to be sampled in
order to be processed by a discrete-time signal processing system.

3 Analog-to-digital conversion

Once the acoustic signal is converted into an electric signal through the
transducer, data can be acquired in order to switch to the discrete domain,
where the discrete-time signal processing tools are of use. This step is ac-
complished by the analog-to-digital conversion (A/D conversion) process by
sampling and quantising the signal. The A/D process provides a vector of
quantised samples corresponding to the acoustic signal.

3.1 Periodic sampling

A sample xs(t) represents an instant value of a continuous-time signal xc(t).
Generally, continuous-time signals are sampled periodically, i.e., the tempo-
ral distance between two consecutive samples is constant, which is called the
sampling period T . The inverse of the sampling period is called the sampling
frequency fs = 1

T and it is measured in Hertz (Hz) or samples per second.
For convenience, no quantisation issues are treated in this section, there-

fore the samples xs(t) are just normalised in time, leaving x[n]. Note that
x[n] maintains the infinite precision of the signal’s amplitude (as it is de-
fined in a continuous domain), thus describing an ideal sampling process,
aka continuous-to-discrete conversion process (C/D conversion).

C/D conversion is an idealised model of periodic sampling. C/D per-
mits implementing continuous-time linear time-invariant (LTI) systems as
discrete-time LTI systems if the input is bandlimited and its maximum fre-
quency component is below the Nyquist rate (i.e. half the sampling rate).

3.1.1 Time-domain representation of sampling

The mathematical representation of sampling in C/D is shown in Eq. (1),
and Figure 1 shows is graphical representation (noting that s(t) corresponds
to an impulse train with period T ).

x[n]← xs(t) =
∞∑

n=−∞
xc(t) δ(t− tn); tn = nT =

n

fs
(1)
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Figure 1: Time representation of the sampling process.

In C/D, the essential difference between xs(t) and x[n] is that the for-
mer is, in a sense, a continuous-time signal (specifically a modulated im-
pulse train) that is zero except at integer multiples of T , while the latter
is a discrete-time signal in all senses. The sequence x[n] is indexed on the
integer variable n, which, in effect, introduces a time normalisation; i.e.,
the sequence of numbers x[n] contains no explicit information about the
sampling period T .

Furthermore, the samples of xc(t) are represented by finite numbers in
x[n] rather than as the areas of impulses as with xs(t).
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3.1.2 Frequency-domain representation of sampling

Considering from Eq. (1) that

xs(t) = xc(t) s(t) (2)

the transform of xs(t) is given by the Modulation or Windowing Theorem

Xs(Ω)→ Xs(jΩ) =
1

2π
Xc(jΩ) ∗ S(jΩ) (3)

where

S(jΩ) =
2π
T

∞∑
k=−∞

δ(Ω− kΩs); Ωs =
2π
T

(4)

it follows that

Xs(jΩ) =
1
T

∞∑
k=−∞

Xc(j(Ω− kΩs)) (5)

A graphical representation of Eq. (5) is shown in Figure 2. Sampling
representations rely only on the assumption of a bandlimited Fourier trans-
form.
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T
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|
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Figure 2: Frequency representation of the sampling process.

As long as the highest frequency component of the input signal remains
B ≤ Ωs − B, no aliasing distortion is produced and the original signal
xc(t) may be recovered from xs(t) with an ideal lowpass reconstruction filter
Hr(jΩ) with gain T (to compensate Eq. (5)) and cutoff frequency B ≤ Ωc ≤
Ωs − B. Otherwise, the copies of Xc(jΩ) overlap and the original signal is
no longer recoverable by lowpass filtering. Hence, it is of utmost importance
that no frequency component higher than half the sampling rate “poisons”
the sampling procedure. By restricting the frequency content of the input
signals that go into the sampler (prefiltering using continuous-time/analog
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lowpass filters), none of the copies of Xc(jΩ) can overlap. Therefore, it is
ensured that no higher frequency continuous-time signal copy can produce
the same output sequence of samples, and the aliasing distortion is avoided.

Eventually, it can be stated that

Xs(jΩ) = X(ejω)|ω=ΩT = X(ejΩT ) (6)

where the frequency scaling or normalisation in the transformation from
Xs(jΩ) to X(ejω) is directly a result of the time normalisation in the trans-
formation from xs(t) to x[n].

3.1.3 Sample-and-hold

In a practical setting (i.e., A/D), the operation of sampling is implemented
by a sample-and-hold system (S&H), which can be viewed as an approxima-
tion to the ideal C/D converter.

The S&H system holds the value of the continuous-time input signal
during a certain period of time, namely TQ. This single value stabilisation
is needed by the quantiser that follows (in the A/D device) to output the
corresponding binary code. This fact sets a limitation on the sampling
frequency as it cannot be higher than 1

TQ
.

The output of an ideal S&H system1 is

xSaH(t) =
∞∑

n=−∞
xc(nT )h0(t− nT ) = h0(t) ∗

∞∑
n=−∞

xc(t) δ(t− nT ) (7)

xSaH(t) = xs(t) ∗ h0(t) (8)

where h0(t) is the impulse response of a zero-order-hold (ZOH) system, i.e.,

h0(t) =
{

1, 0 < t < T
0, otherwise

(9)

xSaH(t) is a staircase waveform where the sample values are held con-
stant during a sampling period, see Figure 3.

In the frequency domain, a transform of a convolution in time domain
is a product of transforms

XSaH(jΩ) = Xs(jΩ)H0(jΩ) (10)
1It is emphasised that the S&H system of this discussion is ideal in the sense that the

electronic equipment of the A/D device that implements it introduces little deviations due
to physical restrictions.
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Figure 3: Time representation of the sample-and-hold system.

Note that the ideally sampled signal Xs(jΩ) (as it would be obtained
with C/D) is now distorted by H0(jΩ) due to the ZOH system of the S&H,
where

H0(jΩ) =
2 sin

(
ΩT
2

)
Ω

e−jΩ
T
2 (11)

Figure 4 shows the frequency representation of H0(jΩ). The gain of the
ZOH only drops to 2

π (or -4dB) at Ω = π
T . Hence, a reconstruction filter

Hr(jΩ) is needed to remove the high-frequency components introduced by
the discontinuities of the staircase waveform. Note that wrt the reconstruc-
tion filter used in the ideal sampling scenario, this one does not need to be
amplified by T because this sampling method does not introduce the former
1
T attenuation. Nevertheless, Hr(jΩ) might have a special shape to compen-
sate the gain drop introduced by the ZOH. Similar to xs(t) in C/D, xSaH(t)
is discretised in time into x[n].

3.2 Quantisation

Sample quantisation is a nonlinear process that consists in representing /
encoding the infinite precision value of a sample x[n] into one of a finite set
of prescribed values (finite precision) defined by a binary codebook, thus
obtaining xq[n]. Given that x[n] ∈ R and Q + 1 bits define a codebook
range of 2Q+1 ∈ N symbols (amplitude levels), quantising a sample implies
approximating its real value to one of these possible integer values, see Figure
5.

Quantisers may be defined with uniform or nonuniform quantisation lev-
els ∆, yielding linear or nonlinear quantisers. The ∆ parameter determines
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Figure 4: Frequency representation of the zero-order-hold system and the
reconstruction filter.

the full-scale level of the A/D converter. In general,

∆ =
2Xm

2Q+1
=
Xm

2Q
(12)

where Q+1 represents the number of bits of the words of the code, including
the sign of the value, and Xm represents the maximum signal peak allowed.
Note that the range of the codebook is adjusted to the dynamic range of
the A/D, i.e. 2Xm. Regarding the actual code that represents the values, it
is generally preferred a binary code that permits doing arithmetic directly
with the code words as scaled representations of the quantised samples, e.g.,
the two’s complement code.

3.2.1 Analysis of the effects of quantisation

Since the quantisation procedure is basically an approximation xq[n] ∼ x[n],
it always produces an error signal eq[n]:

eq[n] = xq[n]− x[n] (13)

In general,

|eq[n]| < ∆
2

(14)

except when x[n] is outside the allowed range of the quantiser (x[n] > Xm).
Such samples are said to be clipped, and the quantiser is said to be over-
loaded. Note that Eq. (14) has this form due to the use of the rounding
function in implementing the quantisation.

Given that eq[n] is generally unknown, a simplified model of the quanti-
sation process is used considering this uncertainty: eq[n] is modelled with a
random variable e assuming that
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Figure 5: Quantisation process.

1. e is a sample sequence of a stationary random process, modelling the
error process.

2. e is uncorrelated with x[n].

3. The error process is a white-noise process.

4. The probability distribution of the error process is uniform over the
range of the quantisation error: Pe = U [−∆

2 ,
∆
2 ].

The preceding assumptions lead to an effective analysis of quantisation that
is useful to predict the system’s performance, especially when the input
signal is complicated and fluctuates in an unpredictable manner. The error
signal e is referred to as quantisation noise.

A common measure of the amount of degradation of a signal by additive
noise in general is the signal-to-noise ratio (SNR), defined as the ratio of
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signal variance (power) to noise variance

SNR = 10 log
(
σ2
x

σ2
e

)
(15)

Regarding the average power of quantisation noise, i.e., the second order
moment of an uniform distribution

E(e2) =
∫ ∆/2

−∆/2
e2 1

∆
de =

∆2

12
= σ2

e (16)

note that by increasing one bit the number of bits used for linear quantisa-
tion, the average power of quantisation noise decreases 6dB approximately,
thus increasing 6dB the SNR:

10 log σ2
e = Q · 10 log 0.25 + 10 logX2

m − 10 log 12 (17)

3.2.2 Quantisation with a compander

Companding consists in compressing and expanding the dynamic range of an
analog signal. The name is a portmanteau of compressing and expanding.
In digital systems, companding can reduce the quantisation error (hence
increasing the signal to quantisation noise ratio).

The reason of their practical use is related to the properties of everyday
harmonic signals, like the voice. These typical signals carry a lot more infor-
mation in the amplitude range of low values than in the range of high values;
their sample value histogram is thus centred at zero amplitude. Therefore,
it is sensible to raise the presence of low-valued samples versus high-values
samples before entering a linear quantiser.

In this sense, the µ-law algorithm is taken as an example of companding
algorithm. The compressing function is shown in Eq. (18) and its inverse
function, the expanding function, is shown in Eq. (19).

f(x(t)) = sgn(x(t))
ln(1 + µ|x(t)|)

ln(1 + µ)
|x(t)| ≤ 1 (18)

f−1(y(t)) = sgn(y(t)) (1/µ) ((1 + µ)|y(t)| − 1) |y(t)| ≤ 1 (19)

Note how the µ-law algorithm actually amplifies low-valued signals. For
example, observe that the derivative of the compressing function

d

dx
f(x(t)) =

µ

ln(1 + µ) (1 + µx(t))
x(t) > 0 (20)
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amplifies x(t) when it takes low amplitude values, i.e. Eq. (21), otherwise it
flattens x(t) (the gain becomes lower than the unit).

x(t) <
1
µ

(
µ

ln(1 + µ)
− 1
)

(21)

Also note that the average power of quantisation noise in Eq. (17) as-
sumes that the input signal x(t) covers the whole dynamic range of the
quantiser 2Xm, where all the quantising discontinuities affect the signal. In
the compander scenario, this assumption is accurate and favourable only
when

x(t) < f(x(t)) ≤ Xm (22)

Alternatively, in the sole linear quantiser scenario, less quantising dis-
continuities cover the range of the same low-valued input signal x(t). This
could be interpreted as a decrease of bits needed to quantise, and according
to Eq. (17), it increases the average power of quantisation noise.

4 Digital-to-analog conversion

The digital-to-analog conversion or D/A conversion is the inverse process
of A/D, i.e., the reconstruction of a bandlimited original signal x(t) from
its discrete-time samples x[n]. Note that 1) a high sampling frequency and
2) many bits per sample are desirable to obtain a good signal reconstruc-
tion. With (1) more frequency components are captured, and with (2) the
quantisation noise is minimised.

4.1 Bandlimited interpolation

The original continuous-time signal xc(t) may be recovered from its samples
x[n] with knowledge of the sampling period T . To this end, the impulse
train modulation provides a convenient means for understanding this recon-
struction process.

If the condition B ≤ Ωs
2 imposed by the sampling theorem (in order to

avoid aliasing) is met, and the modulated impulse train is filtered by an
appropriate ideal lowpass filter Hr(jΩ) with cutoff frequency Ωc ≤ Ωs

2 and
gain T , then the Fourier transform of the output of the filter Xr(jΩ) will
be identical to the Fourier transform of the original continuous-time signal
Xc(jΩ), and thus, the output of the filter will be xc(t), see Figure 6. This
is an idealised D/A model of bandlimited interpolation.
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Figure 6: Idealised D/A model of bandlimited interpolation.

4.2 Linear interpolation

Given that ideal lowpass filters for signal reconstruction cannot be imple-
mented, in some cases simple interpolation procedures are just adequate.
In linear interpolation, the reconstructed signal xr(t) between two original
consecutive samples x1 = x[n] and x2 = x[n + 1] is described by a linear
equation

xr(t) =
x2 − x1

T
t+ x1 0 ≤ t < T (23)

The piecewise linear approximation of the original signal described in
Eq. (23) is attained with a first-order-hold (FOH) system

xFOH(t) = xs(t) ∗ hlin(t) (24)

where hlin(t) is a triangular function

hlin(t) =
{

1− |t−T |T , |t− T | < T
0, otherwise

(25)

Hlin(jΩ) is determined using the convolution property of the Fourier
transform and the transform of the rectangular function with duration T
and amplitude 1

T

Hlin(jΩ) = sinc2

(
T

2
Ω
)
e−j2πΩT (26)

Note that the FOH is more enhanced than the ZOH for signal reconstruction
as its transitions in time are a little smoother, and therefore less energy is
dispersed to higher frequencies.
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