
Scilab tutorial oriented toward the

Practice of Discrete-Time Signal

Processing

Alexandre Trilla, Xavier Sevillano

Departament de Tecnologies Mèdia
LA SALLE – UNIVERSITAT RAMON LLULL

Quatre Camins 2, 08022 Barcelona (Spain)
atrilla@salle.url.edu, xavis@salle.url.edu

BY:© $\© =©
2010

Abstract

In this tutorial, Scilab is used for signal processing. The several
tools needed for completing the Practice of Discrete-Time Signal Pro-
cessing are described hereunder. Keep it for reference and use it at
your convenience.

1 About Scilab

Scilab is an open source, numerical computational package and a high-level,
numerically oriented programming language. Scilab provides an interpreted
programming environment, with matrices as the main data type. By util-
ising matrix-based computation, dynamic typing, and automatic memory
management, many numerical problems may be expressed in a reduced
number of code lines, as compared to similar solutions using traditional
programming languages.

Scilab binaries for GNU/Linux, Windows and Mac OS X platforms can
be downloaded directly from the Scilab homepage:

http://www.scilab.org

1

The homepage already detects the computer’s platform and shows a “Down-
load Scilab” banner to ease the download process. Then the installation
instructions must be followed. They are available in the “Support / Docu-
mentation / Tutorials” section (Introduction to Scilab) or in the README
files bundled with the downloaded tarball.

Scilab was created in 1990 by researchers from Institut National de
Recherche en Informatique et en Automatique (INRIA) and ’Ecole Nationale
des Ponts et Chauss’ees (ENPC). The Scilab Consortium was formed in May
2003 to broaden contributions and promote Scilab as worldwide reference
software in academia and industry. In July 2008, the Scilab Consortium
joined the Digiteo Foundation. Scilab is in continuous development; it is an
ongoing project in the Google Summer of Code.

2 Scilab environment

Once Scilab is launched, it provides a Command Line Interface on a console
to introduce the commands, and interprets them interactively after each
carriage return. The syntax interpreted by Scilab and some specific signal
processing functions are presented with a set of examples.

2.1 Variables

Variables are defined by case-sensitive alphanumeric identifiers (underscores
are also allowed). For example, to represent an integer number like a = 1 in
Scilab:
−− > a = 1
a =

1.
or a more general complex number like a = 1 + 3j:
−− > a = 1 + 3 * %i
a =

1. + 3.i
Note that Scilab uses the mathematical notation of i to refer to

√
−1

instead of the common j used in the Theory. The % character before i is
used to escape the alphanumeric character of ‘i’ that would generally refer
to a (non-predefined) variable.

2.2 Functions

Some useful functions for operating with a complex number x are:

2

• The absolute value/magnitude abs(x)

• The phase angle angle(x)

• The square root sqrt(x)

• The real part real(x)

• The imaginary part imag(x)

• The complex conjugate conj(x)

• The decimal logarithm log10(x)

• The natural logarithm log(x)

• The element-wise exponential exp(x), i.e. ex

Regarding these functions, note that number a = 1+3j may also be defined
in polar form:
−− > a = abs(1 + 3 * %i) * exp(%i * angle(1 + 3 * %i))
a =

1. + 3.i
despite the console still displays it in binomial form. Note that some func-
tions may include other functions, like the phase angle function described
above.

Additionally, some useful trigonometric functions are:

• The sine sin(x)

• The cosine cos(x)

• The sine inverse asin(x)

• The cosine inverse acos(x)

• The tangent tan(x)

• The inverse tangent atan(x)

• The hyperbolic sine sinh(x)

• The hyperbolic cosine cosh(x)

• The hyperbolic tangent tanh(x)

And some useful signal processing functions are:

3

• The convolution convol(h,x)

• The Discrete Fourier Transform fft(x)

• The group delay group(·)

In case of doubt regarding a function and/or its usage, the command
help is of use to access a Help Browser.

There are some other functions in Scilab that enable interfering with
the program flow in order to perform some specific tasks. For example, see
function pause. The pause is extremely useful for debugging purposes; it
will be handy as the complexity of the practice exercises grows ¨̂

2.2.1 Creation of functions

Scilab enables the execution of self-produced functions, stored in a “∗.sci”
file. These files contain the sort of commands seen above, in addition to con-
trol flow commands like conditional executions (if..else..end), iterative
executions (for..end), etc., pretty much like the majority of programming
languages. Check the Help Browser for further information.

In order to create a personalised function, Scilab provides an Editor ap-
plication, but any editor will do. A sample Scilab function “examplefunc.sci”
follows:

// Comments
function [r1] = examplefunc(p1)

...
(code)
...
r1 = 1; // Return

endfunction
where the examplefunc receives parameter p1 and returns r1.

Finally, in order to run the function, Scilab must be aware of its exis-
tence through the exec(‘‘examplefunc.sci’’) command. The file must
be accessible in the working directory path pwd, which can be reached with
the change directory cd command, like on a Unix box.

2.3 Matrices

In the end, every variable refers to a matrix. In the former examples, number
a was stored in a 1× 1 matrix. Row vectors (1×N matrices) may also be
defined in Scilab with the square brackets:

4

−− > rv = [1 2 3 4]
rv =

1. 2. 3. 4.
where N is the length of the vector (N = 4 in this example). For vectors,
there exists a function called length(x) that yields N .

In order to obtain a column vector (N×1 matrix), the rows are separated
with the semicolon:
−− > cv = [1; 2; 3; 4]
cv =

1.
2.
3.
4.

In order to access and use the content of a vector, the brackets are used
as dereference operators, bearing in mind that vectors are indexed following
[1 2 ... N-1]:
−− > cv(3)
ans =

3.
Note that when the result of a command is not assigned to a variable,
Scilab assigns its to the default “answer” (ans) variable. ans contains the
last unassigned evaluated expression.

Matrices are defined using both the row vector and column vector syntax:
−− > m = [11 12 13; 21 22 23]
m =

11. 12. 13.
21. 22. 23.

The numbers contained in this matrix example also indicate their index, so
that:
−− > m(1,2)
ans =

12.
The colon mark is of use to indicate all the elements in a row or column:
−− > m(1,:)
ans =

11. 12. 13.
where all the elements in the first row are displayed.

More enhanced dereferencing would include sequences. For example:
−− > 1:3
ans =

5

1. 2. 3.
indicates a sequence from 1 to 3, with a default increment of 1 unit, which
result would be equal to −− > 1:1:3. Alternatively,
−− > 1:2:3
ans =

1. 3.
indicates a sequence from 1 to 3, with an increment of 2 units, thus resulting
in 1 and 3. If this trick is applied on dereferencing a matrix variable:
−− > m(1,1:2:3)
ans =

11. 13.
Increments may also be negative, thus resulting in decreasing sequences:
−− > 3:-2:1
ans =

3. 1.
In order to retrieve the size of a matrix, the function size(x) is of use:
−− > size(m)
ans =

2. 3.
where the first number indicates the number of rows and the second the
number of columns.

Operation among elements (scalars, vectors and matrices) include the
dot/scalar product (*), the matrix addition (+), the matrix subtraction (–),
the matrix multiplication (*), the matrix left division (\), the matrix right
division (/), the transpose (’) and the power (̂). Term-by-term multiplica-
tion (.*) and division (./) are also allowed.

Finally, to list the variables used in a session, the whos function displays
their names, types, sizes and number of bytes. And in order to prevent the
console from being too verbose, by appending a a semicolon at the end of a
command, the result is just not displayed.

2.4 Signals

In general, signals are represented by vectors, i.e. arrays of (not yet quan-
tised) samples. Inherently, the temporal difference that exists between two
consecutive samples (positions i and i+ 1 in the vector) equals to one sam-
pling period.

For practical purposes, the signals generally refer to audio signals, and
the WAV format is of use for their portability. Therefore, in order to load
a WAV sound file into a y variable: y = wavread("file.wav");. More

6

information may be obtained from the WAV metadata through: [y, fs,
bit] = wavread("file.wav");, where fs keeps the sampling frequency
and bit keeps the number of bits used to encode each sample.

After the samples of a sound file are loaded into a variable, they can
be then reproduced by the computer’s soundcard through the sound(y,fs)
command. And in order to save the signal in a WAV file, the command
wavwrite(y,fs,bit,"file.wav") is of use. Note that Scilab always au-
toscales the signal in order to use the maximum dynamic range available,
therefore there is no need to multiply the signal by a constant in order to
raise the volume.

The following sections present common instructions to deal with signals
in Scilab.

2.4.1 Generation of sinusoids

The equivalent sampling process (in a Continuous-to-Discrete conversion)
of a sinusoid signal may be generated with the sine and cosine functions.
The following example supposes that the real signal x(t) is sampled at fs =
11025Hz.

x(t) = A sin(ωt+ φ) = 2 sin
(

2π 10 t+
π

2

)
Note that x(t) has an amplitude peak of 2 units, a frequency of 10 Hz and
a phase of π

2 radians. Considering that the discrete-time representation of
x(t), therefore x[n], is given for t = nT = n

fs
, it results:

x[n] = x(t) = sin
(
2π 10T n+ π

2

)
t = nT

In order to obtain x[n] in Scilab:

1. Generate an index vector n, i.e. a row vector, like n = 1:1000. Note
that the final sampled signal will thus contain 1000 samples

2. Compute x[n] like x = 2 * sin (2 * %pi * 10 * n / 11025 + %pi
/ 2);

In order to visualise the discretised signal, the function plot(x) is of
use. If applied directly on the x vector variable, its sample indices are taken
for the plot abscissa, see Figure 1. Otherwise, x(tn) may also be plotted vs.
its temporal indices through plot(n/11025,x).

7

Figure 1: Plot of x[n] vs. its sample indices.

2.4.2 Generation of signal delays

In order to generate a signal that is composed of several delays of a base
signal, the function delay(x,T,w,fs) is of use, where:

• x Base signal

• T Delay vector T = [t1t2...tn] (in seconds)

• w Weight vector (the amplitude weight of the base signal corresponding
to each delay w = [w1w2...wn])

• fs Sampling frequency

Hence, the delay function produces a signal y(t) according to

y(t) =
n∑
k=1

w[k]x(t− T [k])

which implies that T [k] is always positive (a delay always goes after the base
signal, it is like a kind of echo).

For example, taking the former sampled signal x[n] shown in Figure 1 as
the base signal x (this signal lasts 90.70ms), with y = delay(x,1e-1*[0 2
5],[1 0.5 -2],11025); a new signal y[n] would be obtained as a sampled
version of y(t) = x(t) + 0.5x(t− 200ms)− 2x(t− 500ms), shown in Figure
2.

8

Figure 2: Example delay of x[n].

2.4.3 Generation of white Gaussian noise

White Gaussian noise is a random signal, produced by a random number
generator with a Gaussian distribution (with mean 0 and variance 1). Since
this noise is white, it contains frequencies along the whole spectrum. In
order to generate a sequence of N samples of white Gaussian noise, the
rand(1:N,‘‘normal’’) function is of use.

The average power of the generated white Gaussian noise, determined
by a Gaussian random variable X, by definition is given by its second-order
moment, i.e. its variance:

E(X2) =
∫ ∞
−∞

x2pX(x) dx = σ2
X

where E is the mathematical expectation operator, and pX(x) is the normal
probability density function.

Therefore, scaling the average power of the white Gaussian noise by a
factor p, implies scaling the specific values x of the Gaussian random variable
X by a factor

√
p.

2.4.4 Filter design

This tutorial presents a design technique for linear-phase Finite Impulse
Response (FIR) filters, based on directly approximating their desired/ideal
frequency responses by windowing their corresponding impulse responses.

9

To this purpose, the function [h,H,ft] = h filter(G,N,fc1,fc2,fs) is
of use, where:

• G Gain of the filter’s bandpass

• N Number of points of the impulse response. The greater this value,
the more ideal the filter is, and thus the better it adjusts to the ideal
frequency specifications

• fc1, fc2 Filter’s bandpass described by its ideal cutoff frequencies
(-3dB), where:

fc1 < fc2

fc1, fc2 ∈ [0,
fs
2

]

• fs Sampling frequency, expressed in Hertz

• h Impulse response of the filter

• H Frequency response of the filter (4096 points)

• ft Frequency test points of H. H[k] corresponds to the frequency re-
sponse of the filter at frequency f [k] Hz.

For example, [h,H,ft] = h filter(1,20,0,1000,16000) creates a low-
pass filter with a cutoff frequency of 1 KHz, a unitary gain and a 20 points
long impulse response, working with a sampling frequency of 16000 Hz.

The function plot(ft,abs(H)) represents graphically the absolute value
of the gain of the filter versus its frequency response, see Figure 3. By
clicking “Edit/Figure properties” the graphical format of the figure may be
changed at will.

Similarly, plot(h) represents graphically the corresponding impulse re-
sponse of the filter, see Figure 4.

A comprehensive analysis of the design technique implemented in the
h filter function is presented in [Trilla and Sevillano, 2010].

2.4.5 Filter usage

Once a filter is designed, it may then be used with the filter(num,den,x)
function, where:

• num Numerator of the transfer function of the filter

• den Denominator of the transfer function of the filter

10

Figure 3: Example magnitude frequency response |H(ejω)|.

• x Input signal

In case the designed filter has a FIR (e.g. produced with the h filter
function), then den = 1, and the coefficients of the impulse response directly
define the numerator of the transfer function, therefore filter(h,1,x).

It should be allowed to use the convol function (convolution) to attain
the same result as with the filter function, but for practical purposes the
latter is preferred (it is implemented with the Direct Form II Transposed in-
stead of the Fast Fourier Transform, refer to [Oppenheim and Schafer, 2009]
for further details).

3 Xcos

Xcos is a Scilab toolbox for the modelling and simulation of dynamical
systems. Xcos is particularly useful for modelling systems where continuous-
time and discrete-time components are interconnected.

Xcos provides a Graphical User Interface to construct complex dynamical
systems using a block diagram editor. These systems can in turn be reused
following a modular structure.

3.1 Running Xcos

Xcos can be launched with the xcos; command in the Scilab command-
line, or with the “Applications / Xcos” option, or even with an icon shortcut

11

Figure 4: Example impulse response h[n].

under the Scilab menus. Once Xcos is loaded, it displays the Palette browser
and an empty diagram, see Figure 5.

3.2 Diagram edition

Xcos displays a graphical editor that can be used to construct block diagram
models of dynamical systems. The blocks can come from various palettes
provided in Xcos or can be user-defined. Editor functionalities are available
through pull-down menus placed at the top of the editor window.

3.2.1 Blocks

Xcos provides many elementary blocks organised in different palettes that
can be accessed using the operation “View / Palette browser”. Blocks from
palettes can be copied into the main Xcos diagram editor window by right-
clicking (context-menu button) first on the desired block and then clicking
the “Add to” option, or just by dragging and dropping them into the diagram
editor.

The behaviour of a Xcos block may depend on parameters that can be
modified. These parameters can be changed by double-clicking on the block.
This action opens up a dialogue box showing the current values of the block
parameters, and allowing the user to change them.

Often it is useful to use symbolic parameters to define block parameters.
This is particularly the case if the same parameter is used in more than one

12

Figure 5: Xcos loaded. The Palette browser and an empty diagram are
displayed.

block or if the parameter is computed as a function of other parameters.
Symbolic parameters are simply Scilab variables that must be defined in
the “context” of the diagram before being used in the definition of block
parameters. To access the context of a diagram, use the “Simulation / Set
Context” option. This opens up an editor to introduce context variables (or
even a Scilab script).

Sometimes it is useful to enclose several blocks in one super-block, for
its ease of interpretation (and debugging) in a higher-level diagram. In or-
der to do so, select the blocks that are to be enclosed in a super-block and
then choose the “Region to superblock” option of the context menu. The
construction of a more complex hierarchy (with enhanced super-block be-
haviours) is beyond the scope of this tutorial, refer to [Campbell et al., 2005]
for further details.

3.2.2 Links

In order to interconnect the blocks in the diagram window, their input/output
ports (i.e. the arrows) have to be linked by dragging them from one to an-
other. Splits on links can also be created by dragging the existing links to

13

the new ports.
Xcos diagrams contain two different types of links. The regular links

transmit signals and the activation links transmit activation timing infor-
mation (synchronism), i.e., system events. By default, the activation links
are drawn in red and the regular links in black. And by convention, regu-
lar ports are placed on the sides of the blocks whereas activation ports are
respectively on the top and at the bottom of the blocks.

3.2.3 Synchronism and special blocks

When two blocks are activated with the same activation source (they have
the same activation times) it is said that they are synchronized. Alterna-
tively, if the output of one is connected to the input of the other, the compiler
makes sure the blocks are executed in the correct order. Synchronism is an
important property. Two blocks activated by two independent clocks ex-
actly at the same time are not synchronized. Even though their activations
have identical timing, they can be activated in any order by the simulator.

There are two very special blocks in Xcos: the If-then-else block “Event
handling / IFTHEL f” and the event select “Event handling / ESELECT f”
block. These blocks are special because they are the only blocks that gen-
erate events synchronous with the incoming event that had activated them
(they introduce no synchronism delay).

3.2.4 Save and load

Xcos diagrams are saved in a XML file format, following the “File / Save”
option, and giving the saved diagram a “∗.xcos” file extension. Text files are
of great utility in software development for enabling the use of incremental
(backup) copies and the use of a version control system.

Saved diagrams may be loaded at Xcos launch time through the xcos
diagram.xcos; command, or once in Xcos, through the “File / Open”
option.

3.3 Diagram simulation

To simulate a diagram, the “Simulation” menu is of use.

3.3.1 Setup

Simulation parameters can be set by the “Simulation / Setup” operation.
For example, one useful parameter to adjust is the final simulation time (in

14

seconds), otherwise the simulation goes on for a very long period of time
(100000 seconds by default). In order to do so, in the “Set Parameters”
window that pops up, adjust the “Final integration time” to the number of
samples that are to be simulated.

3.3.2 Start

To start a simulation, click on the “Simulation / Start” option, or the cor-
responding icon shortcut.

Running the simulation for a diagram leads to the opening of convenient
graphics windows to display the output signal of the simulation and/or any
other signals of interest set to be displayed (windows are opened and updated
by the scope block, see Section 3.4.2). A simulation can be stopped using the
“Simulation / Stop” option or the corresponding icon shortcut, subsequent
to which the user has the option of continuing the simulation, ending the
simulation, or restarting it.

3.4 Signal processing blocks and functions

Some of blocks are already available in Xcos palettes. These blocks pro-
vide elementary operations needed to construct models of many dynamical
systems. The most important blocks for the Practice of Discrete-Time Sig-
nal Processing are reviewed in this section (describing their parameters and
output). In case that any useful blocks are not directly available in Xcos,
design instructions are given to obtain them.

3.4.1 Signals

Signal blocks are output systems, aka sources. They provide the input sig-
nals to the diagrams.

Constant Given the “Constant” amplitude value, it outputs a signal that
maintains this value during the whole simulation interval. It is directly
implemented in the “Sources / CONST m” block.

Unit step Given the “Step time”, the “Initial value” (0 by default) and the
“Final value” (1 by default), it outputs a step function at the specified
time. It is directly implemented in the “Sources / STEP FUNCTION”
block.

Unit rectangular pulse Defined by the duration of the pulse dp and the
time shift ts (initial time, when the pulse begins to rise). It may be

15

implemented with the difference between two unit step blocks and one
addition block “Mathematical Operations / SUMMATION”. The first
unit step is adjusted to rise at ts and the second at ts+ dp, see Figure
6.

Figure 6: Xcos diagram of a unit rectangular pulse.

Unit triangular pulse Defined by the same parameters as the unit step
plus the duration of the pulse. It may be implemented by firstly sum-
ming three step function blocks with an addition block “Mathematical
Operations / BIGSOM f”, and then integrating the sum with one in-
tegral block “Continuous time systems / INTEGRAL m”. The first
step block begins at ts and has a final value of α = 2

dp , the second

step begins at ts+ dp
2 and has a final value of −2α, and the third step

begins at ts + dp and has a final value of α. Also, the addition block
“Inputs ports signs/gains” parameter needs to be set to [1;1;1] in
order to define three input ports, see Figure 7.

Sinusoidal wave Given the “Magnitude” amplitude value, the “Frequency”
and the “phase”, it outputs a sinusoidal signal according to the given
parameters. It is directly implemented in the “Sources / GENSIN f”
block. The frequency is set in radians/second, i.e., ω = 2πf .

Square wave Given the “Amplitude” M parameter, for every input event
it outputs M and −M alternatively. It is directly implemented in the
“Sources / GENSQR f” block.

The needed activation events may be generated with an activation
clock block “Sources / CLOCK c”, given the desired “Period” and
“Init time”. And with an adequate delay of synchronism, a rectangular
pulse train may be obtained.

16

Figure 7: Xcos diagram of a unit triangular pulse.

Sawtooth wave While no activation event is present, it outputs a ramp by
the rate of one amplitude unit per second. Otherwise, it sets to zero
and then the cycle begins another time. It is directly implemented in
the “Sources / SAWTOOTH f” block.

Chirp Defined by a sinusoidal signal with variable frequency. It can be
expressed as

x(t) = cos(2πf(t) t)

where f(t) implements a linear frequency transition from f0 to f1 in
T seconds

f(t) =
f1 − f0

T
t+ f0

The chirp may be implemented with an arbitrary mathematical expres-
sion block “User-Defined Functions / EXPRESSION”, three reference
constant blocks and one time function block “Sources / TIME f”, see
Figure 8. The mathematical expression block has to be adjusted to 4
“number of inputs” and its “scilab expression” has to be cos(2 * %pi
* (((u2-u1)/u3)*u4+u1) * u4).

Noise Defined by a random number distribution (say Normal) and a power
G. It may be implemented with a random generator block “Sources
/ RAND m”, a gain block “Mathematical Operations / GAINBLK f”
and an activation clock block “Sources / CLOCK c” to drive the ran-
dom generator, see Figure 9. The “flag” parameter of the random

17

Figure 8: Xcos diagram of a chirp signal.

generator has to be set to 1 in order to obtain a Normal distribu-
tion, and the “Gain” parameter of the gain block has to be set to the
squared root of the desired power gain G.

Figure 9: Xcos diagram of a Gaussian noise signal with power G.

Rectangular pulse train Defined by the duration of the rectangular pulse
dp and the period of the pulse train T > dp (time difference between
two consecutive ascending or falling signal flanks). It may be imple-
mented with a unit rectangular pulse block, a delay block “Continuous
time systems / TIME DELAY” and an addition block “Mathematical
Operations / BIGSOM f”, see Figure 10.

Dirac comb Defined by the period T of the impulse train. Note that the
Dirac delta function does not exist in reality, hence it is approximated
by a triangular function of total integral 1 and a pulse duration of

18

Figure 10: Xcos diagram of a rectangular pulse train.

one tenth of T . The approximation is continuous and compactly sup-
ported, although not smooth and so not a mollifier (aka approximation
to the identity).

With the knowledge acquired to develop the previous basic signals, many
(other) arbitrary signals may be “easily” built.

3.4.2 Basic systems

Basic system blocks enable the modification/processing of signals. Some-
times, for a certain application, more than one block may accomplish the
desired task. General guidelines are given in this section. For further details,
refer to the “Block help” option of the context menu for each palette block.

Addition/Subtraction Performs (positive or negative) addition of its in-
puts. It is implemented in the “Mathematical Operations / BIG-
SOM f” block. Its “Inputs ports signs/gain” parameter permits spec-
ifying the number of ports of the block as well as its (positive or
negative) port gains like [g1; g2; ...; gN].

Product/Division Performs the product or division of its inputs. It is im-
plemented in the “Mathematical Operations / PRODUCT” block. Its
“Number of inputs or sign vector” parameter defines which input ports
are multipliers (positive sign) and which ones are dividends (negative
sign).

Amplification Applies a given “Gain” to the input signal. It is imple-
mented in the “Mathematical Operations / GAINBLK f” block.

Integration Integrates the input signal. It is implemented in the “Contin-
uous time systems / INTEGRAL m” block.

19

Derivation Derives the input signal. It is implemented in the “Continuous
time systems / DERIV” block.

Absolute value Calculates the absolute value of the input signal. It is
implemented in the “Mathematical Operations / ABS VALUE” block.

Sign Calculates the sign of the input signal value x, i.e., it outputs -1
for x < 0, 0 for x = 0 and 1 for x > 0. It is implemented in the
“Mathematical Operations / SIGNUM” block.

Delay Given a “Delay” value, it delays the input signal accordingly. It
is implemented in the “Continuous time systems / TIME DELAY”
block. Its initial value may also be set with the “initial input” param-
eter.

Saturation Given an “Upper limit” and a “Lower limit”, it delivers an
output signal value that never exceeds these limits. It is implemented
in the “Discontinuities / SATURATION” block.

Mathematical expression Given the “number of inputs” (i.e., u1, u2, ...)
and a “scilab expression”, it permits evaluation a mathematical expres-
sion (using addition/subtraction, product/division and power raising).
It is implemented in the “User-Defined Functions / EXPRESSION”
block.

Filter Given the “Numerator” and the “Denominator” of the desired filter
in Laplace domain (obtained with any design method), it filters the
input signal. It is implemented in the “Continuous time systems /
CLR” block.

Sample and Hold Each time an activation event is received, it copies the
signal value of its input on its output, and holds it until a new activa-
tion event is received. It is implemented in the “Signal Processing /
SAMPHOLD m” block.

Quantisation Given a “Step” size (in amplitude units), it outputs the in-
put signal (with continuous amplitude) with discrete amplitude values.
It is implemented in the “Signal Processing / QUANT f” block.

Finally, as a special block due to its extensive use in dynamic systems
modelling, the scope block is presented.

20

Scope Given an activation event, it plots the present input signal value
onto a graphic window display. Therefore, the scope permits the vi-
sualisation of a given signal during the simulation. It is implemented
in the “Sinks / CSCOPE” for a single input signal, or in the “Sinks /
CMSCOPE” for multiple input signals.

References

[Campbell et al., 2005] Campbell, S. L., Chancelier, J.-P., and Nikoukhah,
R. (2005). Modeling and Simulation in Scilab/Scicos with ScicosLab 4.4.
Springer, New York, NY, USA, first edition.

[Oppenheim and Schafer, 2009] Oppenheim, A. V. and Schafer, R. W.
(2009). Digital Signal Processing. Prentice–Hall, third edition.

[Trilla and Sevillano, 2010] Trilla, A. and Sevillano, X. (2010). Filter anal-
ysis and design. (Web-Available).

21

	About Scilab
	Scilab environment
	Variables
	Functions
	Creation of functions

	Matrices
	Signals
	Generation of sinusoids
	Generation of signal delays
	Generation of white Gaussian noise
	Filter design
	Filter usage

	Xcos
	Running Xcos
	Diagram edition
	Blocks
	Links
	Synchronism and special blocks
	Save and load

	Diagram simulation
	Setup
	Start

	Signal processing blocks and functions
	Signals
	Basic systems

