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Abstract

This paper presents the text-to-speech (TTS) synthesis system
of La Salle (Universitat Ramon Llull, URL) and its adaptation to
the Albayzin Evaluation Campaign of FALA2010 conference.
The URL-TTS system follows the classical scheme of unit se-
lection TTS synthesis systems. However, it presents two dis-
tinguishable particularities:i) prosody prediction learned from
labelled data by means of Case-Based-Reasoning (CBR) and
perceptual weight tuning by means of active interactive Genetic
Algorithms (aiGA). The aiGA-based weights are compared to
multilinear regression (MLR) weights both considering classi-
cal averaged cost function and its root-mean squared variant.
The internal validation tests and the results of the evaluation
campaing are described, and finally discussed.
Index Terms: speech synthesis, unit selection, weight tuning,
prosody prediction, interactive genetic algorithms, case-based
reasoning

1. Introduction
The text-to-speech (TTS) synthesis system of the Grup de Re-
cerca en Tecnologies Mèdia (GTM) of La Salle (Universitat Ra-
mon Llull) (URL-TTS) is based on the original mid-90’s second
generation [1] Catalan concatenative TTS system, which con-
sidered diphones as basic units andTD-PSOLAfor waveform
generation [2, 3]. Subsequently, the system has been improved
across years until the current unit selection TTS (US-TTS) syn-
thesis system (see [4] for further details). The unit selection
based URL-TTS synthesis engine presents two principal partic-
ularities (see figure 1):i) a case-based reasoning (CBR) prosody
prediction module based on learning prosodic patterns from
recorded corpora [5], andii ) a unit selection module, which
integrates real human perceptual preferences through weights
tuned by active interactive genetic algorithms (aiGA), which
are adjusted at cluster level [6, 7, 8]. Moreover, great effort
has been done to obtain automatic corpus development tools in
order to speed up the set-up of the URL-TTS synthesis system
for new voices [9]. This additional work involves features such
as improving the selection of texts to be used during the record-
ing process, including rules for avoiding ambiguity on phonetic
transcription, refining unit segmentation [9] and reliablepitch
marking [10]. In addition, there has been some further research
focused on new acoustic parametrizations based on voice qual-
ity (VoQ) and harmonic plus noise models (HNM) [11], be-
sides new approaches for expressive speech corpus parametriza-
tion [12]. All those improvements have been developed with
the support of several research projects: SALERO, (IST-FP6-
027122), SAVE (TEC2006-08043/TCM), evMIC (TSI-020301-
2009-25).
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Figure 1: Block diagram of the URL-TTS synthesis system
based on unit selection (US-TTS).

In this contest, we have incorporated some contributions
with respect to the previous competition [4]:i), the speech cor-
pus preparation includes a (quite simple) corpus pruning pro-
cess based on detecting outlier voiced units with the aid of aof a
clustering tool (thewagontool of Festival [13]);ii ) the prosody
prediction module [5] has been incorporated in the TTS system,
providing a richer prosodic reference for driving the unit selec-
tion process. This module has been used to guide the unit se-
lection module only, and it has not been applied for conducting
the posteriorTD-PSOLA-based signal processing modification.
In contrast, it has been considered the use of natural prosody
of the retrieved acoustic units. This decision has been taken
to recover the natural micro-prosody of units while minimizing
the need of signal manipulation, following the classical idea of
US-TTS systems to “choose the best to modify the least” [14].
Regarding the unit selection module,iii ) the selection process
has been updated through the use of 14 subcosts and 3 types
of parameters (acoustic and linguistic parameters in target sub-
costs, and acoustic parameters in concatenation subcosts), and
iv) the cost function weights are adjusted by using a three-stage
process, which involves clustering and perceptual weight tun-
ing [8]. Finally,v) TD-PSOLA is used for the waveform gener-
ation, minimizing both pitch and energy discontinuities around
concatenation points.

This paper is organized as follows. Sections 2, 4, 5 and 6
describe the main modules of the current URL-TTS synthesis
system based on unit selection. Section 3 is devoted to the Al-
bayzin 2010 Evaluation Campaign corpus preparation process.
The internal validation tests and the evaluation campaing results
are presented in section 7, and conclusions and future work are
outlined in sections 8 and 9.



2. Phonetic transcription
Thephoneme-setused by the URL-TTS system is derived from
SAMPA [15]. The phonetic transcription module consists of a
rule-based system [16]. The rules are applied on a data structure
that is a list of grapheme-phoneme pairs within a statement.It
is possible to use insertion (I) or deletion (D) rules. The rules
are applied only when the evaluation (E) of a phoneme charac-
teristic yields a positive result.

E(gr ==′ h′) → D(gr) (1)

E(gr ==′ x′) → I(/ks/) (2)

Rule (1) indicates that the grapheme (gr) ′h′ must be
deleted, while rule (2) indicates that the grapheme′x′ must be
transformed into the phonemes pair/ks/, thus implying a pho-
netic insertion. Regarding the exceptions, the system includes a
dictionary that is consulted before applying any rule.

3. Creation of Unit Inventory
The voice of this competition (internally named as uvigda es)
has been the 4th Spanish voice adapted to the URL-TTS syn-
thesis system. Previously, we created the urlsames voice for
weather forecasting restricted domain, the urlpat es emotion-
ated voice with 5 basic emotions (anger, joy, neutral, sad and
sensual), and adapted the upcma es voice for the 2008 Al-
bayzin competition. It has to be added that urlpat es voice is
the main voice for the Spanish version of the URL-TTS synthe-
sis system, which has been used in the projects mentioned in the
introduction. In addition, it is worth noting that URL-TTS sys-
tem is multilingual. The system also supports 2 Catalan voices
(upc pauca and upconaca from FesCat) and 4 English voices
(url samen, url pgp en, url lau en and urlrog en) making a
total of 8 public voices available. All of them may be tested on
the GTM public website1.

3.1. Segmentation and Labelling

3.1.1. Phonetic segmentation with pauses detection

In the segmentation process, the speech corpus is labelled indi-
cating the temporal limits at the phoneme level. Our research
group has been working to improve the segmentation process in
recent years, in terms of the quality of the labelling process, the
ease of use with the inclusion of user interfaces and language
independence. Presently, the training and the posterior segmen-
tation processes are based on Hidden Markov Models (HMM).
To this end, a proprietaryMatlabR© code has been developed,
also using the HTK tool (Hidden Markov Model Toolkit) [17].

The corpus that has been provided for the 2010 Albayzin
Evaluation Campaign has been recorded by a male in neutral
voice. It consists of 1217 utterances, 17797 word instancesand
a total vocabulary size of 5465 words. Regarding its analysis for
the competition, the apparition and omission of silences have
been controlled. Therefore, the pauses are correctly set accord-
ing to the text. Alternatively, occlusive sounds are treated in
special so that voice bursts and the previous silences are mod-
eled as different units. At the end of the process we have ob-
tained 826 different diphones with a total of 88571 diphoneson
the corpus.

1http://www.salle.url.edu/portal/departaments/home-depts-DTM-
projectes-demos

3.1.2. Pitch marking

The PRAAT tool [18] has been used for signal pitch marking.
It performs an acoustic periodicity detection on the basis of an
accurate autocorrelation method [19]. In a first step, the voiced
parts of the spoken utterance are pitch marked using this proce-
dure. The pitch mark values are allowed to range between 75
and 600 Hz. In a second step, the unvoiced parts of the spoken
utterance are given a sequence of pitch marks correspondingto
the linear interpolation between the values of the previouspitch
mark and the following one.

3.2. Corpuspruning

The process of recording and automatically labeling (segmenta-
tion and pitch marking) a speech corpus is prone to make errors.
During the recording process, the speaker may introduce vari-
ants in the pronunciation or changes in the speed of delivery.
Hence, elisions may be performed by speeding-up the speak-
ing rate, or breaks may be introduced in the case of slowing it
down, among others. A low-rate error labeling process is cru-
cial for the general success of our US-TTS synthesis system,
since the unit selection process itself is not capable of guaran-
teeing the retrieval of an error free unit sequence. In contrast to
considering an exhaustive manual revision, a quite simple prun-
ing process that attempts to detect errors in the recording and
labeling phases has been implemented. In this work, the prun-
ing has been performed at the phoneme level, by only consid-
ering voiced phonemes as they present more consistent param-
eters for the analysis. For each phoneme, the pruning process
takes into account its prosodic parameters (pitch, energy and
duration) and the first 3 spectral formants (obtained with [18]).
Next, the 6-dimensional space (3 prosodic dimensions plus 3
spectral dimensions) is clustered using thewagontool of Fes-
tival [13]. Once the phoneme groups are defined, the labelled
phonemes out of their corresponding region are removed. As a
result, 4908 recorded units are removed from the overall 88571
units (i.e. a 5.54% corpus size reduction).

4. Prosody Prediction
The URL-TTS synthesis system incorporates a corpus-based
method for the quantitative modelling of prosody [5], following
the case-based reasoning (CBR) algorithm proposed by [20].
This module predicts three main prosodic parameters: the fun-
damental frequency (F0) contour, the segmental duration and
the energy, with the purpose of guiding the unit selection.

The automatic extraction of prosodic features from text
starts from our linguistic analysis tool [21]. It carries out the
phonetic transcription of text (based on SAMPA), annotating
intonation groups (IG), stress groups (SG), words and sylla-
bles. The IG in Spanish is defined as a structure of coherent
intonation that does not include any major prosodic break [22].
Prosodic breaks take place due to pauses or significant inflec-
tions of the F0 contour. The SG is defined as a stressed word
preceded by one or more unstressed words, if they appear.

For the F0 contour modelling, the SG has been chosen fol-
lowing the proposal of [23]. The SG incorporates the influence
of the syllable (it includes one stressed syllable plus someun-
stressed ones) and the pitch structure at IG level is achieved by
the concatenation of SG contours. However, this model lacks
variations due to micro-intonation. Up to now, we only dif-
ferentiate between declarative, exclamatory, interrogative and
suspended/unfinished IGs [24], which can be reliably identified
from punctuation signs. Another attribute is the placementof



the tonic syllable in the SG. Finally, other considered attributes
are the number of syllables of the SG and the positions of the
SG relative to the IG and the sentence.

A quantitative representation of the F0 contour has been
used, by means of the coefficients of the polynomial that mini-
mizes the error between the original set of points and the poly-
nomial. Therefore, F0 parameters consist of the coefficients of
the polynomial that are adjusted to minimize the distance be-
tween the polynomial and a collection of points that represent
the value of the average F0 of every phoneme. This mean value
of F0 is referenced to the centre of each phoneme of the IG.

For segmental duration and energy modelling, the phoneme
has been chosen the basic acoustic unit (as [25, 26]). These pa-
rameters depend on basically the phoneme identity and the con-
text where it is placed (attributes related to position and stress).

5. Unit Selection
5.1. Framework

The unit selection module follows the classical scheme de-
scribed by Hunt and Black in [27]. The corpus units are re-
trieved by means of the Viterbi dynamic programming algo-
rithm [28], which seeks the best sequence of units by minimiz-
ing a cost function. This cost function is defined as a weighted
sum of several normalized subcosts (see equation (5)). In gen-
eral terms, these subcosts are composed of target and concate-
nation measures [27]. For each possible candidate unit, target
subcosts measure the difference between the ideal unit on that
position (either by linguistic definition or prosodic prediction)
and the candidate unit. Moreover, for each possible pair of can-
didate units, concatenation subcosts measure the acousticdis-
continuity at the concatenation point.

Thus, the unit selection cost function of uniti jointly with
unit j is defined by the following equations:
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whereui is the candidate unit,ti is the target unit,uR
i is the

parametrization on the right concatenation point of the candi-
date unit anduL

j is the parametrization of the left concatena-
tion point of the candidate unit.D [·, ·] is the distance function
(Manhattan, euclidean, cubic, etc.) andP (·)k is the measured
value of parameterk for the corresponding unit.

Moreover, for this particular competition, we wanted to
analyse the effects of changing classical averaged cost function
(AVG) (see equation (5)) [27] for the root mean squared (RMS)
cost function variant proposed in [29]. RMS cost function con-
siders quadratic weighted sum of different subcosts instead of

computing the lineal weighted sum of subcosts (see equation
(10)).
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In terms of target subcosts, we consider four acoustic sub-
costs (pitch, energy and left/right half phone durations) and
seven linguistic subcosts (position in utterance, position in
word, position in syllable, previous and next phonemes, part-
of-speech and syllable stress). That makes a total of11 target
subcosts. As concatenation subcosts, we consider discontinuity
of pitch, energy and cepstral coefficients at the concatenation
point. Cepstral distance is computed considering the first 12
Mel-Cepstral coefficients along their derivatives. Overall, the
cost function is composed by 14 subcosts of 3 different types
(acoustic and linguistic for target and acoustic for concatena-
tion subcosts).

5.2. Weight Tuning

The weightswk
T and wk

C of the cost function are tuned by a
3-step process:

i) Automatic weight tuning is performed using Multilinear
Regression (MLR) [27, 30]. In order to avoid negative
weight values, we used non-negative least squares imple-
mentation [31]. For each recorded unit in the corpus, MLR
performs regression across the 20 acoustically nearest units
considering the cepstral distance and their related subcosts.

ii) Once unit weights are automatically tuned at unit level, in
a second phase, these weights are clustered by expectation
maximisation (EM) algorithm in order to obtain weight
patterns for each cluster [32]. EM is chosen since it is
the method that obtains better validation clustering indices
[33]. Afterwards, phonetic and linguistic information of
each unit is mapped to weight patterns clusters by means
of a classification and regression tree (CART). At this point
we have weight patterns at cluster level, where the cluster
is defined by linguistic and phonetic specifications.

iii) In the final stage, the weights for each cluster are tuned per-
ceptually. The number of clusters is set to 5 after reaching a
consensus among different validity indices [34]. Once the
groups of units are defined, four representative sentences of
each cluster (mainly containing units of that cluster) are se-
lected. The utterances are chosen through an entropy max-
imization algorithm [35]. These 20 sentences (4 sentences
for each of the 5 clusters) are then used for conducting
the perceptual weight tuning process based on active in-
teractive Genetic Algorithm (aiGA), following the scheme
described in [8]. It is worth noting that no prediction of
prosody is considered for the weight tuning, assuming an
ideal process by extracting the prosody values of the tar-
get sentence. Finally, the aiGA-based weights are obtained
and a new CART tree is built for determining the final per-
ceptual weights pattern per cluster.



6. Waveform Generation
The waveform generation process included in the URL-TTS
synthesis system is based onTD-PSOLA[36]. In that origi-
nal work, all units are pitch-synchronously resynthesizedover-
lapping their frames in order to match the duration and pitch
of the target unit sequence. Discontinuities of pitch are min-
imized by interpolating pitch marks around the concatenation
points between units that are not consecutive in the corpus.In
this work, informal listening tests have shown that the synthetic
speech quality is better when the target F0 and duration are re-
covered from the corpus instead of considering the CBR-based
prosodic prediction.The original pitch marks structure iskept in
the speech segments generated from units that are consecutive
in the corpus. At each concatenation point the signal frames
are interpolated, following new pitch marks values in orderto
achieve a smoother pitch contour. Also, signal amplitude ad-
justment is conducted to avoid energy discontinuities.

7. Experiments
In this section, the experiments conducted to set-up the URL-
TTS synthesis system and the 2010 Albayzin Evaluation Cam-
paign results are described. The validation experiments are
perceptual tests considering Mean Opinion Score (MOS) [37].
Some investigations [38, 39] state that pairwise direct compar-
ison (pairwise preference tests) overcomes MOS in terms of
obtaining preference for final users in the case of comparing
similar systems. To that effect, we adapted the classical MOS
methodology to a double stimuli input in order to obtain the
advantages of both methods. That is, the same input utterance
was presented to the user synthesized by two different TTS sys-
tem configurations, but the user had to rank them independently
instead of choosing which one was the best. For testing the
stimuli, we used the TRUE platform [40], which is capable to
perform MOS, pairwise comparison tests or both at the same
time. After presenting the validation tests, the results collected
from the evaluation campaing are described and discussed.

7.1. Validation of weights with copy-prosody

Once the weights have been perceptually tuned, they are sub-
mitted to a subjective validation process to confirm their appro-
priateness. We consider the weights obtained by MLR [30] as
the baseline for validating the aiGA-based weights.

To that effect, 20 utterances different from the ones in-
volved in the perceptual adjustment were chosen from the
speech corpus to be part of a preference test. The utterances
were synthesized by 4 different unit selection configurations
(aiGA-rms, aiGA-avg, MLR-rms, MLR-avg). aiGA/MLR iden-
tifies the weights used and rms/avg identifies the cost function
involved in the unit selection process. The original recorded
prosody from the utterance (copy-prosody) was used, as done
during the perceptual weight tuning stage. In addition, theunits
composing the utterance were removed from the corpus in order
to avoid the selection of those units, and thus, obtain a morereli-
able evaluation of the compared unit selection processes. More-
over, the natural recorded version of the utterance was alsopre-
sented to the evaluators along with each pair of stimuli in order
to provide an idealtarget.

Six evaluators participated in the validation tests, obtaining
the results depicted in figure 2. As it can be observed, bet-
ter synthesis is achieved by aiGA-based methods: their corre-
sponding averaged MOS results are 3.54 for aiGA through AVG
cost function and 3.41 through RMS cost function, although if
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Figure 2: Internal MOS results comparing different weight tun-
ing (aiGA / MLR) and two different integration cost functions
(averaged vs. root-mean squared) when the target prosody is
extracted from the recorded units.

the Bonferroni correction method is applied to test the signifi-
cance of the results [41], we can conclude that their difference
(0.13) is not statistically significant (p = 0.743). MLR-based
weights behave significantly worse than the perceptual weights
within both cost functions (p < 0.001). However, the AVG cost
function computed with the MLR weights (MOS: 2.94) behaves
slightly better than RMS cost function (MOS: 2.36) with their
difference (0.58) being statistically significant (p < 0.001). As
a last step, we also analyzed the pairwise comparison signifi-
cance through a signed ranked test and we obtained the same
results.

aiGA_avg aiGA_rms MLR_avg MLR_rms
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Figure 3: Internal MOS results comparing different weight tun-
ing (aiGA / MLR) and two different integration cost functions
(averaged vs. root-mean squared) when the target prosody is
predicted by the CBR-based technique.

7.2. TTS final adjustment

In order to test the performance of the whole TTS synthesis sys-
tem, we incorporated the CBR-based prosody prediction mod-
ule with 20 utterances selected from the 2010 Albayzin Eval-
uation Campaign sets. As no natural prosody was available at
that time, the natural recorded sentence was not presented to the
evaluation users.

The same six evaluators participated in the final system val-
idation tests, obtaining the new results depicted in figure 3.
Again, better synthesis is achieved by aiGA-based methods:
their corresponding averaged MOS values are 3.50 for aiGA
through RMS cost function and 3.35 through AVG cost func-



Table 1: Groups detected by Bonferroni pairwise analysis

Group Weight Cost Prosody MOS
Tuning Function Score

1

aiGA AVG COPY 3.54
aiGA RMS CBR 3.50
aiGA RMS COPY 3.41
aiGA AVG CBR 3.35

2 MLR AVG COPY 2.94

3
MLR RMS CBR 2.61
MLR AVG CBR 2.56
MLR RMS COPY 2.36

tion, although their difference (0.15) is not statistically signif-
icant (p = 0.517). MLR-based weights again behave signif-
icantly worse than the aiGA-based weights within both cost
functions (p < 0.001). However, in this case, the difference
of averaged MOS values (0.05) between RMS (MOS: 2.56) and
RMS cost functions (MOS: 2.61) is not statistically significant
(p < 1).

Next, the effects of including CBR-based prosody predic-
tion to the unit selection module are discussed. The obtained
results (copy-prosody and CBR-based prosody) were analyzed
simultaneously. To that effect, we applied Bonferroni pairwise
analysis in order to identify groups on the MOS evaluations.
Groups are defined by configurations with no significant differ-
ences among them. The analysis found three groups in terms
of the MOS results, as it can be seen on table 1. It can be ob-
served that CBR-prosody prediction does not introduce major
alteration to the copy-prosody results. Thus, the determinant
factor for the URL-TTS synthesis system based on unit selec-
tion to obtain high quality speech is the weight tuning method-
ology. Under MLR-weight tuning methodology, synthesis with
artificial (CBR-based) prosody is unable to reach the quality of
natural prosody. Nevertheless, this difference is overcome by
the aiGA-based weights.

As a result, the system presented to the 2010 Albayzin com-
petition includes CBR prosody prediction, aiGA-based weight
tuning and RMS cost function (as presented slight better results
than AVG cost function, although not significant). This con-
figuration achieved a MOS score of> 3.30 in the validation
experiments.

7.3. 2010 Albayzin Evaluation final results

Once the set-up of the system was completed, 400 synthe-
sized sentences were presented to the 2010 Albayzin Evalua-
tion Campaign. This evaluation campaign consisted of 3 sepa-
rate analyses in order to assess different aspects of the evaluated
TTS synthesis systems:i) similarity to the original recorded
voice, ii ) overall quality through mean opinion scores (MOS),
and iii ) intelligibility by computing word error rate (WER) on
sentences composed of random words (i.e. with no clear mean-
ing). The number of users involved in each test was substan-
tially different depending on the test. Whether around 541 users
were involved in the MOS test (see figure 4(b)), only around 137
users were involved in the voice similarity tests (see figure4(a))
and 182 were involved in the WER tests.

In terms of similarity to the recorded voice, the URL-TTS
system performs quite well since it is a US-TTS synthesis sys-
tem, yielding a similar MOS value to the internal validation
tests (average MOS= 3.20). However, on the overall quality

MOS test, the URL-TTS decreases its score to2.62. This sig-
nificant decrease compared to the obtained MOS results may
be motivated to several factors. Firstly, no natural voice was
used on the validation tests, which makes the results not com-
parable. Secondly, few evaluators conducted the internal vali-
dation tests considering only relative improvements instead of
considering the quality of other TTS systems. Finally, the URL-
TTS synthesis system presents several intelligibility problems,
reflected with a poor WER (0.31). This factor maybe caused
by the presence of artifacts, that definitely affects the overall
preceived synthetic speech quality. It is worth noting that, be-
sides including a pruning process, the corpus creation has been
fully automatic with no manual intervention at any stage of the
process (neither using the given labelings or transcriptions).
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(a) Similarity to natural voice
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(b) Overall quality

Figure 4: FALA2010 results through different systems [42]

8. Conclusions
This paper describes the main advances included in the URL-
TTS synthesis system with respect to the previous 2008 Al-
bayzin competition. The two key elements are the CBR-based
prosody model and the aiGA-based weight tuning. After several
perceptual experiments, the URL-TTS synthesis system has ob-
tained acceptable internal validation (MOS> 3.30) and similar-
ity to the natural voice (MOS= 3.20) results. However, there
has been a decrease on the overall quality according to the eval-
uation campaign results (MOS= 2.64), where the URL-TTS
synthesis system has been challenged against to other TTS sys-
tems and some intelligibility problems (WER= 0.31). In favor
of URL-TTS system, it is worth noting that these results were
obtained after reasonable reduced time for the TTS set-up and
tuning, thanks to the fully automatic voice building tools and



tuning platforms.
In terms of the weight tuning of the cost function, it can be

concluded that weight tuning is one of the key factors in order to
obtain good synthetic speech quality for the US-TTS synthesis
system at hand. In addition, the results present a significant im-
provement when considering perceptual tuned weights (aiGA-
based) with respect to using automatically trained weights
(MLR-based). However, the substitution of the cost function
from averaged to root-mean squared does not yield notable
quality changes. Moreover, the perceptual results obtained af-
ter including the CBR-based predicted prosody during the TTS
execution remain almost unaltered. However, it is worth noting
that other key factors for obtaining high quality syntheticspeech
through US-TTS synthesis (e.g. segmentation and pitch mark-
ing, pruning methodology, waveform generation, etc.) havenot
been explicitly analyzed in this paper, leaving their analysis and
optimization for future works.

9. Future work
Future work will be focused on improving the intelligibility and
naturalness of the URL-TTS synthesis system, improving the
corpus building tools and revising the database pruning pro-
cess accordingly. In addition, this work will be focused on im-
proving synthesis flexibility so as to modify the speech identity
and expressiveness. In this regard, we are currently working
on adapting an HNM (Harmonic-plus-Noise Model) library to
the current US-TTS synthesis system. The main objectives are:
i) considering the CBR prosody predictions, besides improving
the quality of concatenations smoothing (avoiding artifacts), by
fully exploiting the potentialities of the HNM through interpo-
lation techniques, andii ), gradually improving the flexibility of
the system (i.e. using speech conversion methods) but keeping
the final synthesis similarity to natural voice as high as possible.
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Speech Style Transformation: Voice Quality and Prosody Mod-
ification Using a Harmonic plus Noise Model,”Proceedings of
Fifth International Conference on Speech Prosody, Chicago, USA,
2010.

[12] I. Iriondo, S. Planet, J. Socoró, E. Martı́nez, F. Aĺıas, and
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